
The Vinum Volume Manager
Greg Lehey

Nan Yang Computer Services Ltd.
PO Box 460

Echunga SA 5153
grog@lemis.com

08-8388-8286

ABSTRACT

This paper describes theVinum Volume Manager, a block device driver which imple-
ments virtual disk drives. It isolates disk hardware from the block device interface and
maps data in ways which result in an increase in flexibility , performance and reliability
compared to the traditional slice view of disk storage.Vinum implements the RAID-0,
RAID-1 and RAID-5 models, both individually and in combination.

Introduction

Despite the rapid evolution of disk hardware, the current UNIX disk abstraction is inade-
quate for a number of modern applications.In particular, file systems must be stored on a
single disk partition (or volume), and there is no kernel support for redundant data stor-
age. Inaddition, the direct relationship between disk volumes and their location on disk
make it generally impossible to enlarge a disk volume once it has been created.Perfor-
mance can often be limited by the maximum data rate which can be achieved with the
disk hardware.

The largest modern disks store only about 30 GB, but large installations routinely have
more than a terabyte of disk storage, and it is not uncommon to see disk storage of sever-
al hundred gigabytes even on PCs. Storage-intensive applications such as Internet World-
Wide Web and FTP servers have accelerated the demand for high-performance, high-vol-
ume, reliable storage systems.

The current trend is to realize such systems indisk array hardware, which looks like a
very large disk to the host system, but which spreads the data over a number of disks,
possibly in a redundant fashion such as RAID-1 or RAID-5. Disk arrays have a number
of advantages:

• They are portable. Since they hav ea standard interface, usually SCSI, but sometimes
IDE, they can be installed on almost any system without kernel modifications.

• They can offer impressive performance: they offload the calculations (in particular, the
parity calculations for RAID-5) to the array, and in the case of replicated data, the ag-
gregate transfer rate to the array is less than it would be to local disks. RAID-0 (strip-
ing) and RAID-5 organizations also spread the load more evenly over the physical
disks, thus improving performance.Nevertheless, an array is typically connected via

1

a single SCSI connection, which can be a bottleneck.

• They are reliable.A good disk array offers a large number of features designed to en-
hance reliability, including enhanced cooling, hot-plugging (the ability to replace a
drive while the array is running) and automatic failure recovery.

On the other hand, disk arrays are relatively expensive and not particularly flexible. An
alternative is a software-basedvolume manager which performs similar functions in soft-
ware. A number of these systems exist, notably the VERITAS® volume manager [Veri-
tas], SolarisDiskSuite[Solstice], IBM’s Logical Volume Facility [IBM] and SCO’s Virtu-
al Disk Manager [SCO]. Animplementation of RAID software is also available for Lin-
ux [Linux].

Vinum
Vinum is an open source [OpenSource] volume manager implemented under FreeBSD
[FreeBSD]. Anumber of features distinguish it from commercial volume managers:

• Vinum implements RAID-0 (striping), RAID-1 (mirroring) and RAID-5 (rotated
block-interleaved parity). In RAID-5, a group of disks are protected against the fail-
ure of any one disk by an additional disk with block checksums of the other disks.1

• Drive layouts can be combined to increase robustness, including striped mirrors (so-
called ‘‘RAID-10’’).

• Vinum implements only those features which appear useful. Some commercial vol-
ume managers appear to have been implemented with the goal of maximizing the size
of the spec sheet.Vinum does not implement ‘‘ballast’’ f eatures such as RAID-4, al-
though it would have been trivial to do so.

• Volume managers initially emphasized reliability and performance rather than ease of
use. Theresults are frequently down time due to misconfiguration, with consequent
reluctance on the part of operational personnel to attempt to use the more unusual fea-
tures of the product.Vinum attempts to provide an easier-to-use non-GUI interface.

Concepts

As used in this document, avolume manager is a software component which isolates file
systems from the underlying disk hardware. Insteadof building file systems ondisk par-
titions, they are built on logical disks, calledvolumes. This has a number of advantages:

• Volumes may span disk drives.

• Volumes may be larger than any drive.

1. The RAID-5 functionality is currently available under license from Cybernet, Inc. [Cybernet]. It will
be released as open source at a later date.

2

• By spreading the disk load over multiple volumes, it is possible to improve perfor-
mance.

• By replicating data within the volume, it is possible to improve availability.

• By changing the volume configuration, it is possible to reorganize disk storage on-
line.

• It is possible to extend the size of volumes.

To achieve these results,Vinum defines a hierarchy of four logical objects:

• A volume is a logical disk.From a user viewpoint, it is almost indistinguishable from
a disk partition, the conventional representation of a logical disk.A volume contains
one or moreplexes.

• A plex is a representation of the data in a volume. Eachplex has an address space the
same size as the size of the volume, though it is not required that the address space be
completely mapped to disk storage.Each plex represents a (possibly incomplete)
copy of the data in the volume, thus providing protection against disk failure. This
represents an implementation of RAID-1.

• Each plex contains one or moresubdisks. A subdisk is a contiguous segment of disk
storage. Conceptually, it is similar to a disk slice, but the implementation is different.
In particular, a disk slice contains metadata such as labels, while a subdisk does not.
A plex can be extended in length by adding subdisks to it: since subdisks can be locat-
ed on any device underVinum control, there is no requirement for contiguous free
space in order to expand a plex.

• A drive is a hardware component which may contain subdisks. From an implementa-
tion viewpoint, it may be a complete device or a disk slice.Vinum does not depend
on any particular disk hardware, though it is intended for use primarily on convention-
al hard disks.

Plex organization
Subdisks may be mapped to plexes in one of three different ways. Thefollowing figures
illustrate the possible ways of mapping blocks of 4096 (0x1000) bytes in a plex with
four subdisks.

• A concatenatedplex maps the subdisks to the plex sequentially, corresponding to
RAID-0. Theplex maps to the complete address space of each subdisk in turn.In a
concatenated plex, subdisks do not need to be of equal size.

3

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

0x8000

0x9000

0xa000

0xb000

0xc000

0xd000

0xe000

0xf000

0x10000

0x11000

0x12000

0x13000

0x14000

0x15000

0x16000

0x17000

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4

Figure 1: Concatenated plex

The dotted lines in this figure represetn the logical blocks in order to illustrate the
differences from the other organizations.

• A striped plex maps the plex address space to equal-sized blocks of each subdisk in
turn. Asa result, the subdisks in a plex must all have the same size:

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0000

0x4000

0x8000

0xc000

0x10000

0x14000

0x1000

0x5000

0x9000

0xd000

0x11000

0x15000

0x2000

0x6000

0xa000

0xe000

0x12000

0x16000

0x3000

0x7000

0xb000

0xf000

0x13000

0x17000

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4

Figure 2: Striped plex

• As implemented byVinum, a RAID-5 plex is similar to a striped plex, except that it
implements RAID-5 by including a parity block in each stripe.As required by
RAID-5, the location of this parity block changes from one stripe to the next:

4

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x0000

0x3000

0x6000

Parity

0xc000

0xf000

0x1000

0x4000

Parity

0x9000

0xd000

0x10000

0x2000

Parity

0x7000

0xa000

0xe000

Parity

Parity

0x5000

0x8000

0xb000

Parity

0x11000

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4

Figure 3: RAID-5 plex

Which plex organization?
Vinum implements only that subset of RAID organizations which make sense in the
framework of the implementation. It would have been possible to implement all RAID
levels, but there was no reason to do so.Each of the chosen organizations has unique
advantages:

• Concatenated plexes are the most flexible: they can contain any number of subdisks,
and the subdisks may be of different length. The plex may be extended by adding
additional subdisks.They require less CPU time than striped or RAID-5 plexes,
though the difference in CPU overhead from striped plexes is not significant. On the
other hand, they are most susceptible to hot spots, where one disk is very active and
others are idle.

• The greatest advantage of striped (RAID-0) plexes is that they reduce hot spots: by
choosing an optimum sized stripe (empirically determined to be in the order of 256
kB), the load on the component drives can be made more even. Thedisadvantages of
this approach are (fractionally) more complex code and restrictions on subdisks: they
must be all the same size, and extending a plex by adding new subdisks is so
complicated thatVinum does not implement it. An additional, trivial restriction is that
a striped plex must have at least two subdisks, since otherwise it is indistinguishable
from a concatenated plex.

• The implementation of RAID-5 plexes stretches the concept of the volume manager
somewhat. While RAID-1 is implemented at the volume level, RAID-5 is
implemented at the plex lev el. As implemented, RAID-5 plexes are effectively an
extension of striped plexes. Comparedto striped plexes, they offer the advantage of
fault tolerance, but the disadvantages of higher storage cost and significantly higher
CPU overhead, particularly for writes.The code is an order of magnitude more
complex than for concatenated and striped plexes. Like striped plexes, RAID-5 plexes
must have equal-sized subdisks and cannot be extended.Vinum enforces a minimum
of three subdisks for a RAID-5 plex, since any smaller number would not make any
sense.

5

The following table gives an overview of the advantages and disadvantages of each plex
organization.

Minimum can must be
Plex type subdisks add equal application

subdisks size

concatenated 1 yes no Large, non-redundant data
storage

striped 2 no yes Highly concurent access
RAID-5 3 no yes Highly reliable storage,

primarily read access

Figure 4: Vinum plex organizations

These are not the only possible organizations. Inaddition, the following could have been
implemented:

• RAID-4, which differs from RAID-5 only by the fact that all parity data is stored on a
specific disk. This simplifies the algorithms somewhat at the expense of drive
utilization: the activity on the parity disk is a direct function of the read to write ratio.
SinceVinum implements RAID-5, RAID-4’s only advantage is nullified.

• RAID-3, effectively an implementation of RAID-4 with a stripe size of one byte.
Each transfer requires reading each disk (with the exception of the parity disk for
reads). Without spindle synchronization (where the corresponding sectors pass the
heads of each drive at the same time), RAID-3 would be very inefficient. In a
multiple-access system, it also causes high latency.

• RAID-2, which uses two subdisks to store a Hamming code, and which otherwise
resembles RAID-3. Compared to RAID-3, it offers a lower data density, higher CPU
usage and no compensating advantages.

In addition, RAID-5 can be interpreted in two different ways: the data can be striped, as
in theVinum implementation, or it can be written serially, exhausting the address space
of one subdisk before starting on the other, effectively a modified concatenated
organization. Thereis no recognizable advantage to this approach, since it does not
provide any of the other advantages of concatenation.

Configuring Vinum

Vinum maintains aconfiguration databasewhich describes the objects known to an
individual system.Initially, the user creates the configuration database from one or more
configuration files with the aid of thevinum(8) utility program. Vinum stores a copy of
its configuration database on each disk slice (whichVinum calls a device) under its
control. This database is updated on each state change, so that a restart accurately
restores the state of eachVinum object.

6

The configuration file
The configuration file describes individual Vinum objects. Thedefinition of a simple
volume might be:

drive a device /dev/sd0h
drive b device /dev/sd1h
drive c device /dev/sd2h
drive d device /dev/sd3h
volume myvol

plex org concat
sd length 512m drive a
sd length 512m drive b

plex org concat
sd length 512m drive c
sd length 512m drive d

This file describes a total of 11Vinum objects:

• Thedrive line describe four disk partitions (drives) and their location relative to the
underlying hardware. They are given the symbolic namesa, b, c andd.

• Thevolume line describes a volume. Theonly required attribute is the name, in this
casemyvol.

• Theplex lines define plexes. Theonly required parameter is the organization, in this
caseconcat. No name is necessary: the system automatically generates a name
from the volume name by adding the suffix .px, wherex is the number of the plex in
the volume. Thusthe first plex will be calledmyvol.p0and the second will be called
myvol.p1.

• Thesd lines describe subdisks. The minimum specifications are the name of a driver
on which to store it, and the length of the subdisk.As with plexes, no name is
necessary: the system automatically assigns names derived from the plex name by
adding the suffix .sx, wherex is the number of the subdisk in the plex. ThusVinum
gives these four subdisks the namesmyvol.p0.s0, myvol.p0.s1, myvol.p1.s0 and
myvol.p1.s1respectively.

After processing this file,vinum(8)produces the following output:

vinum -> create config1
Configuration summary

Drives: 4 (4 configured)
Volumes: 1 (4 configured)
Plexes: 2 (8 configured)
Subdisks: 4 (16 configured)

D a State: up Device /dev/sd0h
D b State: up Device /dev/sd1h
D c State: up Device /dev/sd2h
D d State: up Device /dev/sd3h

V myvol State: up Plexes: 2 Size: 1024 MB

P myvol.p0 C State: up Subdisks: 2 Size: 1024 MB
P myvol.p1 C State: up Subdisks: 2 Size: 1024 MB

S myvol.p0.s0 State: up PO: 0 B Size: 512 MB

7

S myvol.p0.s1 State: up PO: 512 MB Size: 512 MB
S myvol.p1.s0 State: up PO: 0 B Size: 512 MB
S myvol.p1.s1 State: up PO: 512 MB Size: 512 MB

This output shows the brief listing format ofvinum(8).

The following figure demonstrates the layout in graphic form:

Subdisk 1

myvol.p0.s0

Subdisk 2

myvol.p0.s1

Plex 1
myvol.p0

Subdisk 3

myvol.p1.s0

Subdisk 4

myvol.p1.s1

Plex 2
myvol.p1

0 MB

512 MB

1024 MB

volume
address
space

Figure 5: A Vinum volume

In this representation, each plex covers the complete address space of the volume.
Subdisksmyvol.p0.s0and myvol.p1.s0cover the first half of the address space, and
subdisksmyvol.p0.s1andmyvol.p1.s1cover the second half of the address space.

SinceVinum stores these definitions in the configuration database, there is never any need
to define them again in another configuration file. At a later date the user might want to
create another volume and add a plex to the existing volumevol. In order to do so, he
might need to add another drive to the Vinum configuration. Hecould perform these
tasks with the following configuration file:

plex volume myvol org striped 256k
sd size 256m drive a
sd size 256m drive b
sd size 256m drive c
sd size 256m drive d

8

drive e device /dev/sd4h
volume bigraid

plex org raid5 256k
sd size 2g drive a
sd size 2g drive b
sd size 2g drive c
sd size 2g drive d
sd size 2g drive e

In this example, the user first adds another plex to volume myvol. The system
automatically assigns it the namemyvol.p2. The plex contains four subdisks, and the data
is striped across the subdisks in stripes of 256 kB.

The new volume is calledbigraid and contains one plex with a RAID-5 organization and
five subdisks. Again the stripe size is 256 kB. In order to accomodate the fifth subdisk,
the user defines a fifth drive, drive e, which is on the disk partition/dev/sd4h. He doesn’t
need to define the others, since they are already known to the system.

After runningvinum(8), the configuration looks like:

vinum -> create config2
Configuration summary

Drives: 5 (8 configured)
Volumes: 2 (4 configured)
Plexes: 4 (8 configured)
Subdisks: 13 (16 configured)

D a State: up Device /dev/sd0h
D b State: up Device /dev/sd1h
D c State: up Device /dev/sd2h
D d State: up Device /dev/sd3h
D e State: up Device /dev/sd4h

V myvol State: up Plexes: 3 Size: 1024 MB
V bigraid State: up Plexes: 1 Size: 8 GB

P myvol.p0 C State: up Subdisks: 2 Size: 1024 MB
P myvol.p1 C State: up Subdisks: 2 Size: 1024 MB
P myvol.p2 S State: up Subdisks: 4 Size: 1024 MB
P bigraid.p0 R5 State: init Subdisks: 5 Size: 8 GB

S myvol.p0.s0 State: up PO: 0 B Size: 512 MB
S myvol.p0.s1 State: up PO: 512 MB Size: 512 MB
S myvol.p1.s0 State: up PO: 0 B Size: 512 MB
S myvol.p1.s1 State: up PO: 512 MB Size: 512 MB
S myvol.p2.s0 State: up PO: 0 B Size: 256 MB
S myvol.p2.s1 State: up PO: 256 MB Size: 256 MB
S myvol.p2.s2 State: up PO: 512 MB Size: 256 MB
S myvol.p2.s3 State: up PO: 768 MB Size: 256 MB
S bigraid.p0.s0 State: init PO: 0 B Size: 2048 MB
S bigraid.p0.s1 State: init PO: 2048 MB Size: 2048 MB
S bigraid.p0.s2 State: init PO: 4096 MB Size: 2048 MB
S bigraid.p0.s3 State: init PO: 6144 MB Size: 2048 MB
S bigraid.p0.s4 State: init PO: 8192 MB Size: 2048 MB

Startup
The configuration information is stored on the disk slices in essentially the same form as
in the configuration files, which enables the same routines to be used for initialization.
When reading from the configuration database,vinum(8) recognizes a number of

9

keywords which are not allowed in the configuration files. At a point where the user has
commenced initialization of plexbigraid.p0, the configuration database might contain:

drive a state up device /dev/sd0h
drive b state up device /dev/sd1h
drive c state up device /dev/sd2h
drive d state up device /dev/sd3h
drive e state up device /dev/sd4h
volume myvol state up
volume bigraid state down
plex name myvol.p0 state up org concat vol myvol
plex name myvol.p1 state up org concat vol myvol
plex name myvol.p2 state init org striped 512b vol myvol
plex name bigraid.p0 state initializing org raid5 512b vol bigraid
sd name myvol.p0.s0 drive a plex myvol.p0 state up len 1048576b driveoffset 265
b plexoffset 0b
sd name myvol.p0.s1 drive b plex myvol.p0 state up len 1048576b driveoffset 265
b plexoffset 1048576b
sd name myvol.p1.s0 drive c plex myvol.p1 state up len 1048576b driveoffset 265
b plexoffset 0b
sd name myvol.p1.s1 drive d plex myvol.p1 state up len 1048576b driveoffset 265
b plexoffset 1048576b
sd name myvol.p2.s0 drive a plex myvol.p2 state init len 524288b driveoffset 10
48841b plexoffset 0b
sd name myvol.p2.s1 drive b plex myvol.p2 state init len 524288b driveoffset 10
48841b plexoffset 524288b
sd name myvol.p2.s2 drive c plex myvol.p2 state init len 524288b driveoffset 10
48841b plexoffset 1048576b
sd name myvol.p2.s3 drive d plex myvol.p2 state init len 524288b driveoffset 10
48841b plexoffset 1572864b
sd name bigraid.p0.s0 drive a plex bigraid.p0 state initializing len 4194304b d
riveoffset 1573129b plexoffset 0b
sd name bigraid.p0.s1 drive b plex bigraid.p0 state initializing len 4194304b d
riveoffset 1573129b plexoffset 4194304b
sd name bigraid.p0.s2 drive c plex bigraid.p0 state initializing len 4194304b d
riveoffset 1573129b plexoffset 8388608b
sd name bigraid.p0.s3 drive d plex bigraid.p0 state initializing len 4194304b d
riveoffset 1573129b plexoffset 12582912b
sd name bigraid.p0.s4 drive e plex bigraid.p0 state initializing len 4194304b d
riveoffset 1573129b plexoffset 16777216b

The obvious differences here are the presence of explicit location information and naming
(both of which are also allowed, but discouraged, for use by the user) and the information
on the states (which are not available to the user).

At system startup,Vinum reads the configuration database from one of theVinum drives.
Under normal circumstances, each drive contains an identical copy of the configuration
database, so it does not matter which drive is read. Aftera crash, however, Vinum must
determine which drive was updated most recently and read the configuration from this
drive.

Object naming

As described above, Vinum assigns default names to plexes and subdisks, although they
may be overridden. Overriding the default names is not recommended: experience with
the VERITAS volume manager, which allows arbitary naming of objects, has shown that
this flexibility does not bring a significant advantage, and it can cause confusion.

Names may contain any non-blank character, but it is recommended to restrict them to

10

letters, digits and the underscore characters. The names of volumes, plexes and subdisks
may be up to 64 characters long, and the names of drives may up to 32 characters long.

After reading the configuration database,vinum(8) creates a directory/dev/vinum, in
which it makes device entries for each volume it finds. It also creates subdirectories
/dev/vinum/vol, /dev/vinum/plex, /dev/vinum/sdand /dev/vinum/drive, in which it stores
device entries for the corresponding objects. The directories/dev/vinum/vol and
/dev/vinum/plexcontain subdirectories representing the hierarchy of the plexes and
subdisks attached to them.

After processing the first of the configuration files described above, Vinum creates the
following devices:

/dev/vinum:
total 5
brwx------ 1 root wheel 25, 0x40000000 Jul 28 10:57 control
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 drive
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 plex
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 sd
drwxr-xr-x 3 root wheel 512 Jul 28 10:57 vol

/dev/vinum/drive:
total 0
brw-r----- 1 root operator 4, 39 May 25 12:32 a
brw-r----- 1 root operator 4, 15 May 24 14:05 b
brw-r----- 1 root operator 4, 23 May 24 14:05 c
brw-r----- 1 root operator 4, 31 May 24 14:05 d

/dev/vinum/plex:
total 0
brwxr-xr-- 1 root wheel 25, 0x10000000 Jul 28 10:57 myvol.p0
brwxr-xr-- 1 root wheel 25, 0x10010000 Jul 28 10:57 myvol.p1

/dev/vinum/sd:
total 0
brwxr-xr-- 1 root wheel 25, 0x20000000 Jul 28 10:57 myvol.p0.s0
brwxr-xr-- 1 root wheel 25, 0x20100000 Jul 28 10:57 myvol.p0.s1
brwxr-xr-- 1 root wheel 25, 0x20010000 Jul 28 10:57 myvol.p1.s0
brwxr-xr-- 1 root wheel 25, 0x20110000 Jul 28 10:57 myvol.p1.s1

/dev/vinum/vol:
total 1
brwxr-xr-- 1 root wheel 25, 0 Jul 28 10:57 myvol
drwxr-xr-x 4 root wheel 512 Jul 28 10:57 myvol.plex

/dev/vinum/vol/myvol.plex:
total 2
brwxr-xr-- 1 root wheel 25, 0x10000000 Jul 28 10:57 myvol.p0
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 myvol.p0.sd
brwxr-xr-- 1 root wheel 25, 0x10010000 Jul 28 10:57 myvol.p1
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 myvol.p1.sd

/dev/vinum/vol/myvol.plex/myvol.p0.sd:
total 0
brwxr-xr-- 1 root wheel 25, 0x20000000 Jul 28 10:57 myvol.p0.s0
brwxr-xr-- 1 root wheel 25, 0x20100000 Jul 28 10:57 myvol.p0.s1

/dev/vinum/vol/myvol.plex/myvol.p1.sd:
total 0
brwxr-xr-- 1 root wheel 25, 0x20010000 Jul 28 10:57 myvol.p1.s0
brwxr-xr-- 1 root wheel 25, 0x20110000 Jul 28 10:57 myvol.p1.s1

Unlike UNIX drives, Vinum volumes are not partitioned, and thus do not contain a

11

partition table. This has required modification to some disk utilities, notablynewfs,
which previously tried to interpret the last letter of aVinum volume name as a slice
identifier.

Although it is recommended that plexes and subdisks should not be allocated specific
names,Vinum drives must be named. This makes it possible to move a drive to a
different location and still recognize it automatically. Drive names may be up to 32
characters long.

The implementation

At the time of writing,Vinum is still in a late implementation stage.Many aspects of the
implementation are subject to change. This section examines some of the more
interesting tradeoffs in the implementation.

Where the driver fi ts
To the operating system,Vinum looks like a block device, so it is normally be accessed as
a block device. Insteadof operating directly on the device, it creates new requests and
passes them to the real device drivers. Conceptuallyit could pass them to otherVinum
devices, though this usage makes no sense and would probably cause problems.The
following figure, borrowed from [McKusick],2 shows the standard 4.4BSD I/O structure:

system call interface to the kernel

active file entries

socket
VNODE layer

network
protocols

NFS local naming (UFS) special devices
VM

MFS
FFS LFS

cooked
disk

raw
disk
and
tty

tty swap
space
mgmt.buffer cache

line
discipline

block device driver character device driver

the hardware

network
interface
drivers

Figure 6: Kernel I/O structure, after McKusick et. al.

The following figure shows the I/O structure in FreeBSD after installingVinum. Apart
from the effect of Vinum, it shows the gradual lack of distinction between block and
character devices that has occurred since the release of 4.4BSD: FreeBSD implements
disk character devices in the corresponding block driver.

2. This figure is © 1996 Addison-Wesley, and is reproduced with permission.

12

system call interface to the kernel

active file entries

socket
VNODE layer

network
protocols

NFS local naming (UFS) special devices
VM

MFS
FFS LFS

cooked
disk

tty raw
disk
and
tty

swap
space
mgmt.buffer cache

line
discipline

block device driver character device driver

the hardware

Vinum block dev Vinum char
network
interface
drivers

Figure 7: Kernel I/O structur e with Vinum

Design limitations
Vinum was intended to have as few arbitrary limits as possible consistent with an efficient
implementation. Nevertheless, a number of limits were imposed in the interests of
efficiency, mainly in connection with the device minor number format. These limitations
will no longer be relevant after the introduction of a device file system.

Restriction Reasoning

Fixed maximum number
of volumes per system.

In order to maintain compatibility with other versions of
UNIX, it was considered desirable to keep the device
numbers of volume in the traditional 8+8 format (8 bits
major number, 8 bits minor number). This restricts the
number of volumes to 256.In view of the fact thatVinum
provides for larger volumes than disks, and current
machines are seldom able to control more than 64 disk
drives, this restriction seems unlikely to become severe for
some years to come.

Fixed number of plexes
per volume

Plexes supply redundancy according to RAID-1. For this
purpose, two plexes are sufficient under normal
circumstances. For rebuilding and archival purposes,
additional plexes can be useful, but it is difficult to find a
situation where more than four plexes are necessary or
useful. Onthe other hand, additional plexes beyond four
bring little advantage for reading and a significant
disadvantage for writing. I believe that eight plexes are
ample.

13

Fixed maximum number
of subdisks per plex.

For similar reasons, the number of subdisks was limited to
256. It seldom makes sense to have more than about 10
subdisks per plex, so this restriction does not currently
appear severe. Thereis no specific overall limitation on the
number of subdisks.

Minimum device size A device must contain at least 1 MB of storage.This
assumption makes it possible to dispense with some
boundary condition checks.Vinum requires 133 kB of disk
space to store the header and configuration information, so
this restriction does not appear serious.

Memory allocation
In order to perform its functionality, Vinum allocates a large number of dynamic data
structures. Currentlythese structures are allocated by calling kernelmalloc. This is a
potential problem, sincemalloc interacts with the virtual memory system and may
trigger a page fault. Thepotential for a deadlock exists if the page fault requires a
transfer to aVinum volume. It is probably thatVinum will modify its allocation strategy
by reserving a small number of buffers when it starts and using these if amalloc
request fails.

To cache or not to cache
Traditionally, UNIX block devices are accessed from the file system via caching routines
such asbread andbwrite. It is also possible to access them directly, but this facility is
seldom used. The use of caching enables significant improvements in performance.

Vinum does not cache the data it passes to the lower-level drivers. It would also seem
counterproductive to do so: the data is available in cache already, and the only effect of
caching it a second time would be to use more memory, thus causing more frequent cache
misses.

RAID-5 plexes pose a problem to this reasoning.A RAID-5 write normally first reads
the parity block, so there might be some advantage in caching at least the parity blocks.
This issue has been deferred for further study.

Access optimization
The algorithms for RAID-5 access are surprisingly complicated and require a significant
amount of temporary data storage.To achieve reasonable performance, they must take
error recovery strategies into account at a low lev el. A RAID 5 access can require one or
more of the following actions:

• Normal read. All participating subdisks are up, and the transfer can be made directly
to the user buffer.

14

• Recovery read. One participating subdisk is down. To recover data, all the other
subdisks, including the parity subdisk, must be read.The data is recovered by
exclusive-oring all the other blocks.

• Normal write. All the participating subdisks are up. This write proceeds in four
phases:

1. Readthe old contents of each block and the parity block.

2. ‘‘Remove’’ t he old contents from the parity block with exclusive or.

3. ‘‘Insert’’ the new contents of the block in the parity block, again with exclusive
or.

4. Write the new contents of the data blocks and the parity block. The data block
transfers can be made directly from the user buffer.

• Degraded write where the data block is not available. This requires the following
steps:

1. Readin all the other data blocks, excluding the parity block.

2. Recreatethe parity block from the other data blocks and the data to be written.

3. Writethe parity block.

• Parityless write, a write where the parity block is not available. This is in fact the
simplest: just write the data blocks. This can proceed directly from the user buffer.

Combining access strategies
In practice, a transfer request may combine the actions above. In particular:

• A read request may request reading both available data (normal read) and non-
available data (recovery read). This can be a problem if the address ranges of the two
reads do not coincide: the normal read must be extended to cover the address range of
the recovery read, and must thus be performed out of malloced memory.

• Combination of degraded data block write and normal write. The address ranges of
the reads may also need to be extended to cover all participating blocks.

An exception exists when the transfer is shorter than the width of the stripe and is spread
over two subdisks. In this case, the subdisk addresses do not overlap, so they are
effectively two separate requests.

Examples
The following examples illustrate these concepts:

15

0x0000

0x1000

0x2000

0x3000

Parity

Parity

Parity

Parity

Parity

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5

0x0000 0x1000 0x2000 0x3000

0x4000 0x5000 0x6000 0x7000

0x8000 0x9000 0xa000 0xb000

0xc000 0xd000 0xe000 0xf000

0x10000 0x11000 0x12000 0x13000

Parity block

Data block involved in transfer

Figure 8: A sample RAID-5 transfer

This diagram illustrates a number of typical points about RAID-5 transfers. It shows the
beginning of a plex with five subdisks and a stripe size of 4 kB. The shaded area shows
the area involved in a transfer of 4.5 kB (9 sectors), starting at offset0xa800 in the plex.
A read of this area generates two requests to the lower-level driver: 4 sectors from
subdisk 4, starting at offset 0x2800, and 5 sectors from subdisk 5, starting at offset
0x2000.

Writing this area is significantly more complicated.From a programming standpoint, the
simplest approach is to consider the transfers individually. This would create the
following requests:

• Read the old contents of 4 sectors from subdisk 4, starting at offset0x2800.

• Read the old contents of 4 sectors from subdisk 3 (the parity disk), starting at offset
0x2800.

• Perform an exclusive OR of the data read from subdisk 4 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘removes’’ the
old data from the parity block.

• Perform an exclusive OR of the data to be written to subdisk 4 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘adds’’ the
new data to the parity block.

• Write the new data to 4 sectors of subdisk 4, starting at offset0x2800.

• Write 4 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2800.

16

• Read the old contents of 5 sectors from subdisk 5, starting at offset0x2000.

• Read the old contents of 5 sectors from subdisk 3 (the parity disk), starting at offset
0x2000.

• Perform an exclusive OR of the data read from subdisk 5 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘removes’’ the
old data from the parity block.

• Perform an exclusive OR of the data to be written to subdisk 5 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘adds’’ the
new data to the parity block.

• Write the new data to 5 sectors of subdisk 5, starting at offset0x2000.

• Write 5 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2000.

This approach is clearly suboptimal. The operation involves a total of 8 I/O operations
and transfers 36 sectors of data.In addition, the two halves of the operation block each
other, since each must access the same data on the parity subdisk.Vinum optimizes this
access in the following manner:

• Read the old contents of 4 sectors from subdisk 4, starting at offset0x2800.

• Read the old contents of 5 sectors from subdisk 5, starting at offset0x2000.

• Read the old contents of 8 sectors from subdisk 3 (the parity disk), starting at offset
0x2000. This represents the complete parity block for the stripe.

• Perform an exclusive OR of the data read from subdisk 4 with the data read from
subdisk 3, starting at offset0x800 into the buffer, and storing the result in the same
place in subdisk 3’s data buffer.

• Perform an exclusive OR of the data read from subdisk 5 with the data read from
subdisk 3, starting at the beginning of the buffer, and storing the result in the same
place in subdisk 3’s data buffer offset.

• Perform an exclusive OR of the data to be written to subdisk 4 with the modified
parity block, starting at offset0x800 into the buffer, and storing the result in the same
place in subdisk 3’s data buffer.

• Perform an exclusive OR of the data to be written to subdisk 5 with the modified
parity block, starting at the beginning of the buffer, and storing the result in the same
place in subdisk 3’s data buffer offset.

• Write the new data to 4 sectors of subdisk 4, starting at offset0x2800.

• Write the new data to 5 sectors of subdisk 5, starting at offset0x2000.

• Write the 8 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2000.

This is still a lot of work, but by comparison with the non-optimized version, the number
of I/O operations has been reduced to 6, and the number of sectors transferred is reduced

17

by 2. The larger the overlap, the greater the saving. If the request had been for a total of
17 sectors, starting at offset0x9800, the unoptimized version would have performed 12
I/O operations and moved a total of 68 sectors, while the optimized version would
perform 8 I/O operations and move a total of 50 sectors.

Degraded read
The following figure illustrates the situation where a data subdisk fails, in this case

0x0000

0x1000

0x2000

0x3000

Parity

Parity

Parity

Parity

Parity

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5

0x0000 0x1000 0x2000 0x3000

0x4000 0x5000 0x6000 0x7000

0x8000 0x9000 0xa000 0xb000

0xc000 0xd000 0xe000 0xf000

0x10000 0x11000 0x12000 0x13000

Parity block

Data block involved in transfer

Inaccessible data block involved in transfer

Inaccessible data

Figure 9: RAID-5 transfer with inaccessible data block

subdisk 4.

In this case, reading the data from subdisk 5 is trivial. Recreatingthe data from subdisk
4, however, requires reading all the remaining subdisks. Specifically,

• Read 4 sectors each from subdisks 1, 2 and 3, starting at offset0x2800 in each case.

• Read 8 sectors from subdisk 5, starting at offset0x2800.

• Clear the user buffer area for the data corresponding to subdisk 4.

• Perform an ‘‘exclusive or’’ operation on this data buffer with data from subdisks 1, 2,
3, and the last four sectors of the data from subdisk 5.

• Transfer the first 5 sectors of data from the data buffer for subdisk 5 to the
corresponding place in the user data buffer.

18

Degraded write
There are two different scenarios to be considered in a degraded write. Referring to the
previous example, the operations required are a mixture of normal write (for subdisk 5)
and degraded write (for subdisk 4). In detail, the operations are:

• Read 4 sectors each from subdisks 1 and 2, starting at offset0x2800, into temporary
storage.

• Read 5 sectors from subdisk 3 (parity block), starting at offset 0x2000, into the
beginning of an 8 sector temporary storage buffer.

• Clear the last 3 sectors of the parity block.

• Read 8 sectors from subdisk 5, starting at offset0x2000, into temporary storage.

• ‘‘ Remove’’ t he first 5 sectors of subdisk 5 data from the parity block with exclusive or.

• Rebuild the last 3 sectors of the parity block by exclusive or of the corresponding data
from subdisks 1, 2, 5 and the data to be written for subdisk 4.

• Write the parity block back to subdisk 3 (8 sectors).

• Write 5 sectors user data to subdisk 5.

Parityless write
Another situation arises when the subdisk containing the parity block fails:

0x0000

0x1000

0x2000

0x3000

Parity

Parity

Parity

Parity

Parity

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5

0x0000 0x1000 0x2000 0x3000

0x4000 0x5000 0x6000 0x7000

0x8000 0x9000 0xa000 0xb000

0xc000 0xd000 0xe000 0xf000

0x10000 0x11000 0x12000 0x13000

Parity block

Data block involved in transfer

Inaccessible data

Figure 10: RAID-5 transfer with inaccessible parity block

19

This configuration poses no problems on reading, since all the data is accessible.On
writing, however, it is not possible to write the parity block. It is not possible to recover
from this problem at the time of the write, so the write operation simplifies to writing
only the data blocks.The parity block will be recreated when the subdisk is brought up
again.

Dri ver structure
One important detail of the nature of the operations which must be performed for RAID-5
access is that they frequently must be performed in two steps. Thisdoes not match well
with the design of UNIX device drivers: typically, the ‘‘top half’’ 3 of a UNIX device
driver issues I/O commands and returns to the caller. The caller may choose to wait for
completion, but one of the most frequent uses of a block device is where the virtual
memory subsystem issues writes and does not wait for completion.

This poses a problem: who issues the second set of requests? The following possibilities,
listed in order of increasing desirability, exist:

1. Thetop half can wait for completion of the first set of requests and then launch the
second set before returning to the caller. This approach can seriously impact
system performance and possibly cause deadlocks.

2. In a threaded kernel, the strategy routine can create a thread which waits for
completion of the first set of requests and starts the second set without impacting
the main thread of the process. At the moment this approach is not possible, since
FreeBSD currently does not provide kernel thread support. It also appears likely
that it could cause a number of problems in the areas of thread synchronization and
performance.

3. Ownershipof the requests can be ‘‘given’’ to another process, which will be
aw akened when they complete. Thisprocess can then issue the second set of
requests. Thisapproach is feasible, and it is used by some subsystems, notably
NFS. It does not pose the same severe performance penalty of the previous
possibility, but it does require that another process be scheduled twice for every
I/O.

4. Thesecond set of requests can be launched from the ‘‘bottom half’’ o f the driver.
This is potentially dangerous: the interrupt routine must call thestart routine.
While this is not expressly prohibited, thestart routine is normally used by the
top half of a driver, and may call functions which are prohibited in the bottom half.

Currently,Vinum uses the fourth solution.This works for most drivers, but not for the
Adaptec 154x driver on a system with more than 16 MB memory: since the 154x is an
ISA bus master device, the driver must allocate bounce buffers on machines with more
than 16 MB memory. The driver allocates these buffers by callingmalloc, which calls
tsleep if memory is not available. Asa result,Vinum cannot be used on a system with

3. UNIX device drivers run in two separate environments. The‘‘ top half’’ r uns in the process context,
while the ‘‘bottom half’’ r uns in the interrupt context. Thereare severe restrictions on the functions
that the bottom half of the driver can perform.

20

an Adaptec 154x and more than 16 MB of memory.

It is possible that this deficiency, possibly with others like it, will lead to a change in the
driver structure; given the current alternatives, this would mean a dæmon process to
handle the I/O.

Performance issues

At present no detailled performance measurements have been made, but indications are
that the performance is very close to what could be expected from the underlying disk
driver performing the same operations asVinum performs: in other words, the overhead
of Vinum itself is negligible. Thisdoes not mean thatVinum has perfect performance:
the choice of requests has a strong impact on the overall subsystem performance, and
there are some known areas which could be improved upon. In addition, the user can
influence performance by the design of the volumes.

The following sections examine some factors which influence performance.

The influence of stripe size
In striped and RAID-5 plexes, the stripe size has a significant influence on performance.
In all plex structures except a single-subdisk plex (which by definition is concatenated),
the possibility exists that a single transfer to or from a volume will be remapped into
more than one physical I/O request. This is never desirable in a system without spindle
synchronization, since the average latency for multiple transfers is always larger than the
av erage latency for single transfers to the same kind of disk hardware. Within the bounds
of the current BSD I/O architecture (maximum transfer size 128 kB), this increase in
latency can easily offset any speed increase in the transfer. This is the main reason why
Vinum does not implement RAID-2 and RAID-3, which always transfer to all drives.

In the case of a concatenated plex, this remapping occurs only when a request overlaps a
subdisk boundary. In a striped or RAID-5 plex, however, the probability is an inverse
function of the stripe size.For this reason, a stripe size of 256 kB appears to be optimum:
it is small enough to create a relatively random mapping of file system hot spots to
individual disks, and large enough to ensure than 95% of all transfers involve only a
single data subdisk. Preliminary testing has confirmed this recommendation.

The influence of request structure
For concatenated and striped plexes,Vinum creates request structures which map directly
to the user-level request buffers. Theonly additional overhead is the allocation of the
request structure, and the possibility of improvement is correspondingly small.

With RAID-5 plexes, the picture is very different. Thestrategic choices described above
work well when the total request size is less than the stripe width.By contrast, consider
the following transfer of 32.5 kB, starting from the same offset as the previous examples:

21

0x0000

0x1000

0x2000

0x3000

Parity

Parity

Parity

Parity

Parity

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5

0x0000 0x1000 0x2000 0x3000

0x4000 0x5000 0x6000 0x7000

0x8000 0x9000 0xa000 0xb000

0xc000 0xd000 0xe000 0xf000

0x10000 0x11000 0x12000 0x13000

Parity block

Data block involved in transfer

An optimum approach to reading this data performs a total of 5 I/O operations, one on
each subdisk. By contrast,Vinum treats this transfer as three separate transfers, one per
stripe, and thus performs a total of 9 I/O transfers.

In practice, this inefficiency should not cause any problems: as discussed above, the
optimum stripe size is larger than the maximum transfer size, so this situation does not
arise when an appropriate stripe size is chosen.

Av ailability

Vinum is currently under development. Analpha version of the base version (without
RAID-5 functionality), running on the FreeBSD operating system, is available under a
Berkeley-style copyright at [vinum]. The RAID-5 functionality is available under licence
from Cybernet, Inc. [Cybernet], and is included in theirNetMAX Internet connection
package.

Futur e directions

The current version ofVinum implements the core functionality. A number of additional
features are under consideration:

• Hot spare capability: on the failure of a disk drive, the volume manager automatically
recovers the data to another drive.

• Logging changes to a degraded volume. Rebuilding a plex usually requires copying
the entire volume. In a volume with a high read to write, if a disk goes down
temporarily and then becomes accessible again (for example, as the result of controller

22

failure), most of the data is already present and does not need to be copied.Logging
pinpoints which blocks require copying in order to bring the stale plex up to date.

• Snapshotsof a volume. Itis often useful to freeze the state of a volume, for example
for backup purposes.A backup of a large volume can take sev eral hours. It can be
inconvenient or impossible to prohibit updates during this time.A snapshot solves
this problem by maintainingbefore images, a copy of the old contents of the modified
data blocks. Access to the plex reads the blocks from the snapshot plex if it contains
the data, and from another plex if it does not.

Implementing snapshots inVinum alone would solve only part of the problem: there
must also be a way to ensure that the data on the file system is consistent from a user
standpoint when the snapshot is taken. Thistask involves such components as file
systems and databases and is thus outside the scope ofVinum.

• A SNMP interfacefor central management ofVinum systems.

• A GUI interface is currentlynot planned, though it is relatively simple to program,
since no kernel code is needed. As the number of failures testify, a good GUI
interface is apparently very difficult to write, and it tends to gloss over important
administrative aspects, so it’s not clear that the advantages justify the effort. On the
other hand, a graphical output of the configuration could be of advantage.

• An extensible UFS. It is possible to extend the size of some modern file systems after
they hav ebeen created. Although UFS (theUNIX File System, previously called the
Berkeley Fast File System) was not designed for such extension, it is trivial to
implement extensibility. This feature would allow a user to add space to a file system
which is approaching capacity by first adding subdisks to the plexes and then
extending the file system.

• Remote data replication is of interest either for backup purposes or for read-only
access at a remote site.From a conceptual viewpoint, it could be achieved by
interfacing to a network driver instead of a local disk driver.

• Extending striped and RAID-5 plexes is a slow complicated operation, but it is
feasible.

References

[CMD] CMD Technology, Inc June 1993,The Need For RAID, An Introduction.
http://www.fdma.com/info/raidinto.html

[Cybernet]The NetMAX Station, http://www.cybernet.com/netmax/index.html. The first
product using theVinum Volume Manager.

[FreeBSD] FreeBSD home page,http://www.FreeBSD.org/

[IBM] AIX Version 4.3 System Management Guide: Operating System and Devices,
Logical Volume Storage Overview
http://www.austin.ibm.com/doc_link/en_US/a_doc_lib/aixbman/baseadmn/lvm_overview.htm

23

[Linux] RAID Solutions for Linux, http://linas.org/linux/raid.html

[McKusick] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S.
Quarterman.The Design and Implementation of the 4.4BSD Operating System, Addison
Wesley, 1996.

[OpenSource]The Open Source Page, http://www.opensource.org/

[SCO] SCO Virtual Disk Manager, http://www.sco.com/products/layered/ras/virtual.html.

[Solstice]http://www.sun.com/solstice/em-products/system/disksuite.html

[vinum] Greg Lehey, The Vinum Volume Manager, http://www.lemis.com/vinum.html

[Wong] Brian Wong, RAID: What does it mean to me?, SunWorld Online, September
1995. http://www.sunworld.com/sunworldonline/swol-09-1995/swol-09-raid5.html

24

