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ABSTRACT

This paper describes thénum Volume Marger, a Hock device dmer which imple-
ments virtual disk dvies. Itisolates disk hardware from the blockvide interface and
maps data in ways which result in an increase kibfléy, performance and reliability
compared to the traditional slice wieof disk storage.Vinum implements the RAID-0,
RAID-1 and RAID-5 models, both individually and in combination.

Introduction

Despite the rapidwelution of disk hardware, the current UNIX disk abstraction is inade-
guate for a number of modern applicatiois particular file systems must be stored on a
single disk partition (or dume), and there is no kernel support for redundant data stor
age. Inaddition, the direct relationship between diskuwnes and their location on disk
make it generally impossible to enlge a disk volume once it has been createekrfor-
mance can often be limited by the maximum data rate which can be&eachigh the
disk hardware.

The largest modern disks store only about 30 GB, bget larstallations routinely ka
more than a terabyte of disk storage, and it is not uncommon to see disk storage of se
al hundred gigabytesren on FCs. Storage-inteng gplications such as Internetodid-
Wide Web and FTP serversvieaaccelerated the demand for high-performance, high-v
ume, reliable storage systems.

The current trend is to realize such systemdisk array hardware, which looks lik a
very large disk to the host systenythwhich spreads the dataep a number of disks,
possibly in a redundanashion such as RAID-1 or RAID-5. Disk arraysséa rumber
of advantages:

* They are portable. Since tgehavea dandard interface, usually SCSI, but sometimes
IDE, they can be installed on almostyasystem without kernel modifications.

* They can offer impresse performance: theoffload the calculations (in particuldne
parity calculations for RAID-5) to the arragnd in the case of replicated data, the ag-
gregae transfer rate to the array is less than it would be to local disks. RAID-0 (strip-
ing) and RAID-5 oganizations also spread the load moventy over the plysical
disks, thus imprang performance.Nevertheless, an array is typically connected via



a gngle SCSI connection, which can be a bottleneck.

* They are reliable. A good disk array offers a large number of features designed to en-
hance reliability including enhanced cooling, hot-plugging (the ability to replace a
drive while the array is running) and automatic failure wecp

On the other hand, disk arrays are re&yi expensve and not particularly fleible. An
alternatve is a ®ftware-basedolume manger which performs similar functions in soft-
ware. A number of these systems exist, notably the VERITAS® volume manager [V
tas], SolariDiskSuite[Solstice], IBM’s Logical \blume Fcility [IBM] and SCOS Virtu-

al Disk Managyer [SCO]. Animplementation of RAID software is alswadable for Lin-
ux [Linux].

Vinum

Vinum is an open source [OpenSource] volume manager implemented under FreeBSD
[FreeBSD]. Anumber of features distinguish it from commercial volume managers:

* Vinum implements RAID-0 (striping), RAID-1 (mirroring) and RAID-5 (rotated
block-interleaed parity). In RAID-5, a group of disks are protectedaatst the &il-
ure of ary one disk by an additional disk with block checksums of the other Hisks.

* Drive layouts can be combined to increaseustbess, including striped mirrors (so-
called “RAID-10").

* Vinum implements only those features which appear useful. Some commaeeial v
ume managers appear tovhdeen implemented with the goal of maximizing the size
of the spec sheeWVinum does not implementballast’ features such as RAID-4, al-
though it would hee keen trivial to do so.

* Volume managers initially emphasized reliability and performance rather than ease of
use. Theresults are frequently down time due to misconfiguration, with consequent
reluctance on the part of operational personnel to attempt to use the more unusual fea-
tures of the productVinum attempts to provide an easier-to-use non-GUI interface.

Concepts

As used in this documentvalume manger is a software component which isolates file
systems from the underlying disk hamw. Insteadf building file systems odisk par
titions, they are built on logical disks, calleeblumes This has a number of advantages:

* \olumes may span disk @as.

* \olumes may be larger thanyadrive.

1. The RAID-5 functionality is currentlyvailable under license from Cybernet, Inc. [Cybernet]. It will
be released as open source at a later date.
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* By spreading the disk loadver multiple volumes, it is possible to impe perfor-
mance.

* By replicating data within the volume, it is possible to inverevailability.

* By changing the volume configuration, it is possible togavore disk storage on-
line.

* ltis possible to extend the size of volumes.
To achieve these resultsyinum defines a hierarghof four logical objects:

* A volumeis a logical disk.From a user viewpoint, it is almost indistinguishable from
a dsk partition, the coventional representation of a logical disk. volume contains
one or morelexes

* A plexis a representation of the data inaduvne. Eaclplex has an address space the
same size as the size of the volume, though it is not required that the address space be
completely mapped to disk storagBach pl& represents a (possibly incomplete)
copy of the data in the alume, thus providing protection against disiiure. This
represents an implementation of RAID-1.

* Each pl& contains one or morsubdisks A subdisk is a contiguous segment of disk
storage. Conceptuallit is amilar to a disk slice, but the implementation ifeliént.
In particular a dsk slice contains metadata such as labels, while a subdisk does not.
A plex can be gtended in length by adding subdisks to it: since subdisks can be locat-
ed on ag device underVinum control, there is no requirement for contiguous free
space in order to expand a plex.

* A drive is a hardware component which may contain subdisks. From an implementa-
tion viewpoint, it may be a completewiee or a disk slice.Vinum does not depend
on ary particular disk hardware, though it is intended for use primarily omecion-
al hard disks.

Plex organization

Subdisks may be mapped toxse in ane of three different ays. Thefollowing figures
illustrate the possible ays of mapping blocks of 4096X1000) bytes in a plg with
four subdisks.

* A concatenatedplex maps the subdisks to the pleequentially corresponding to
RAID-0. Theplex maps to the complete address space of each subdisk inltuan.
concatenated plex, subdisks do not need to be of equal size.



Offset

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000

The dotted lines in this figure represetn the logical blocks in order to illustrate the
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Figure 1: Concatenated plex

differences from the otherganizations.

* A striped plex maps the pbe address space to equal-sized blocks of each subdisk in
turn. Asa result, the subdisks in a plenust all hae the same size:

Offset

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000

* As implemented bywinum a RAID-5 plex is amilar to a striped plex, except that it
implements RAID-5 by including a parity block in each stripgs required by
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Figure 2: Sriped plex
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RAID-5, the location of this parity block changes from one stripe to the next:



Offset  Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4
0x0000 | 0x0000 = 0x1000 = 0x2000 = Paity |»
0x1000 | 0x3000 = 0x4000 = Paity = 0x5000 |»
0x2000 | 0x6000 = Paity = 0x7000 = 0x8000 |»
0x3000 Paity = 0x9000 = 0xa000 » 0xb000 |»
0x4000 | Oxc000 = 0xd000 = 0xe000 = Paity |»
0x5000 | Oxf 000 = 0x10000 = Paity » 0x11000 |»

Figure 3: RAID-5 plex

Which plex organization?

Vinum implements only that subset of RAIDganizations which mak nse in the

framework of the implementation. It would ka been possible to implement all RAID
levels, but there was no reason to do &mach of the chosen ganizations has unique
advantages:

* Concatenated ptes ae the most flexible: tlyecan contain ay number of subdisks,
and the subdisks may be of different length. The phay be &tended by adding
additional subdisks.They require less CPU time than striped or RAID-5xpke
though the difference in CPUWerhead from striped pkes is rot significant. On the
other hand, theare most susceptible to hot spots, where one disk is veme el
others are idle.

* The greatest advantage of striped (RAID-Oxedeis hat thg reduce hot spots: by
choosing an optimum sized stripe (empirically determined to be in the order of 256
kB), the load on the component\wds can be made moreven. Thedisadwantages of
this approach are (fractionally) more comyptede and restrictions on subdisks:ythe
must be all the same size, and extending & ple adding nev subdisks is so
complicated tha¥inum does not implement it. An additional, trivial restriction is that
a driped plx must hae & least tvo subdisks, since otherwise it is indistinguishable
from a concatenated plex.

* The implementation of RAID-5 pkes dretches the concept of the volume manager
somavhat. While RAID-1 is implemented at the volume vé RAID-5 is
implemented at the ptelevd. As implemented, RAID-5 pbees ae efectively an
extension of striped ples. Comparedo striped plges, the offer the advantage of
fault tolerance, but the disaaintages of higher storage cost and significantly higher
CPU owerhead, particularly for writes.The code is an order of magnitude more
comple than for concatenated and stripedxpte Like driped plexes, RAID-5 plexes
must hae equal-sized subdisks and cannot B&eaded. Vinum enforces a minimum
of three subdisks for a RAID-5 plex, sinceyamaller number would not makany
sense.



The following table gies an werview of the advantages and disadvantages of each ple
organization.

Minimum | can must be
Plex type subdisks | add equal application
subdisks | size

concatenated 1 yes no Large, non-redundant data
storage

striped 2 no yes Highly concurent access

RAID-5 3 no yes Highly reliable storage,
primarily read access

Figure 4: Vinum plex organizations

These are not the only possiblgarizations. Inaddition, the following could he been
implemented:

* RAID-4, which differs from RAID-5 only by the fact that all parity data is stored on a
specific disk. This simplifies the algorithms somewhat at tkgerese of drie
utilization: the actiity on the parity disk is a direct function of the read to write ratio.
SinceVinum implements RAID-5, RAID-4 oanly advantage is nullified.

* RAID-3, effectively an implementation of RAID-4 with a stripe size of one byte.
Each transfer requires reading each disk (with the exception of the parity disk for
reads). Without spindle synchronization (where the corresponding sectors pass the
heads of each die & the same time), RAID-3 would be very ifieient. In a
multiple-access system, it also causes high lgtenc

* RAID-2, which uses tw subdisks to store a Hamming code, and which otherwise
resembles RAID-3. Compared to RAID-3, ifef a lower data densjthigher CPU
usage and no compensating advantages.

In addition, RAID-5 can be interpreted indwifferent ways: the data can be striped, as
in the Vinum implementation, or it can be written seriaéhausting the address space

of one subdisk before starting on the otheffectvely a modified concatenated
organization. Thereis no recognizable advantage to this approach, since it does not
provide an of the other advantages of concatenation.

Configuring Vinum

Vinum maintains aconfiguation databasewhich describes the objects known to an
individual system.Initially, the user creates the configuration database from one or more
configuration files with the aid of thenum(8) utility program. Vinum stores a cop of

its configuration database on each disk slice (whictum calls adevice) under its
control. Thisdatabase is updated on each state change, so that a restart accurately
restores the state of ea¢imum object.



The configuration file

The configuration file describes in@tlual Vinum objects. Thedefinition of a simple
volume might be:

drive a device /dev/sdOh
drive b device /dev/sdlh
drive c device /dev/sd2h
drive d device /dev/sd3h
vol une nyvol

pl ex org concat
sd length 512mdrive
sd length 512mdrive
pl ex org concat
sd length 512mdrive
sd length 512mdrive

(o)

(oM o]

This file describes a total of Minum objects:

Thedri ve line describe four disk partitiondrfves) and their location relate o the
underlying hardware. Thg are given the symbolic names, b, ¢ andd.

Thevol une line describes aolume. Theonly required attribute is the name, in this
casenyvol .

Thepl ex lines define plees. Theonly required parameter is theganization, in this
caseconcat. No name is necessary: the system automatically generates a name
from the volume name by adding thefsuf px, wherex is the number of the ptan

the wlume. Thughe first ple will be calledmyvol.pOand the second will be called
myvol.pl

Thesd lines describe subdisks. The minimum specifications are the name wéra dri
on which to store it, and the length of the subdigls with plexes, no name is
necessary: the system automatically assigns namesdiérom the pl& name by
adding the stix . sx, wherex is the number of the subdisk in the>pleThusVinum
gives these four subdisks the namesyvol.p0.sP myvol.p0.s1 myvol.pl.s0and
myvol.pl.slrespectiely.

After processing this filesinum(8) produces the following output:

vinum -> create configl
Configuration summary

Drives: 4 (4 configured)

Vol unes: 1 (4 configured)

Pl exes: 2 (8 configured)

Subdi sks: 4 (16 confi gured)

D a State: up Devi ce /dev/sdOh

Db State: up Devi ce /dev/sdlh

Dc State: up Devi ce /dev/sd2h

Dd State: up Devi ce /dev/sd3h

V nyvol State: up Pl exes: 2 Size: 1024 MB
P myvol . pO C State: up Subdi sks: 2 Size: 1024 MB
P nmyvol . p1 C State: up Subdi sks: 2 Size: 1024 MB
S nyvol . p0. s0 State: up PO 0 B Size: 512 MB



S nyvol . p0.s1 State: up PO 512 MB Si ze: 512 MB
S nyvol . pl.s0 State: up PO 0 B Size: 512 MB
S nyvol . pl.sl State: up PO 512 MB Si ze: 512 MB

This output shows the brief listing formatwhum(8)
The following figure demonstrates the layout in graphic form:

I

i 0 MB
Subdisk 1 volume Subdisk 3
address
myvol . p0. s0O space myvol . pl. s0O
512 MB
Subdisk 2 Subdisk 4
nmyvol . p0. sl nmyvol . pl. sl
Y 1024 MB
Plex 1 Plex 2
nmyvol . p0 nmyvol . pl1

Figure 5: A Vinum volume

In this representation, each ypleovers the complete address space of tldume.
Subdisksmyvol.p0.sOand myvol.pl.sOcover the first half of the address space, and
subdiskamyvol.p0.slandmyvol.pl.slcover the second half of the address space.

SinceVinum stores these definitions in the configuration database, theneeisang need

to define them again in another configuration file. At a later date the user might want to
create anotherolume and add a pteto the existing elumevol. In order to do so, he
might need to add another ki o the Vinum configuration. Hecould perform these
tasks with the following configuration file:

pl ex vol ume nyvol org striped 256k
sd size 256mdrive a
sd size 256mdrive b
sd size 256mdrive ¢
sd size 256mdrive d



drive e device /dev/sd4h
vol une bigraid

plex org rai d5 256k

sd size 2g drive

sd size 2g drive

sd size 2g drive

sd size 2g drive

sd size 2g drive

DOoOOTQD

In this example, the user first adds anotherx gie volume myvol The system
automatically assigns it the nammvol.p2 The plex contains four subdisks, and the data
is striped across the subdisks in stripes of 256 kB.

The nev volume is calledigraid and contains one ptevith a RAID-5 oganization and

five aubdisks. Ag@in the stripe size is 256 kB. In order to accomodate the fifth subdisk,
the user defines a fifth gg, drive e, which is on the disk partitiofdev/sd4h He doesn’t
need to define the others, sinceythee already known to the system.

After runningvinum(8) the configuration looks like:

vi num -> create config2
Configuration summary

Drives: 5 (8 configured)

Vol unes: 2 (4 configured)

Pl exes: 4 (8 configured)

Subdi sks: 13 (16 confi gured)

D a State: up Devi ce /dev/sdOh

Db State: up Devi ce /dev/sdlh

Dc State: up Devi ce /dev/sd2h

Dd State: up Devi ce /dev/sd3h

De State: up Devi ce /dev/sd4h

V nyvol State: up Pl exes: 3 Size: 1024 MB
V bigraid State: up Pl exes: 1 Size: 8 GB
P myvol . pO C State: up Subdi sks: 2 Size: 1024 MB
P nyvol . p1 C State: up Subdi sks: 2 Size: 1024 MB
P myvol . p2 S State: up Subdi sks: 4 Size: 1024 MB
P bi graid. p0 R5 State: init Subdi sks: 5 Size: 8 GB
S nyvol . p0. s0 State: up PO 0 B Size: 512 MB
S nyvol . p0.s1 State: up PO 512 MB Si ze: 512 MB
S nyvol . pl.s0 State: up PO 0 B Size: 512 MB
S nyvol . pl.s1 State: up PO 512 MB Si ze: 512 MB
S nyvol . p2.s0 State: up PO 0 B Size: 256 MB
S nyvol . p2.s1 State: up PO 256 MB Si ze: 256 MB
S nyvol . p2.s2 State: up PO 512 MB Si ze: 256 MB
S nyvol . p2.s3 State: up PO 768 MB Si ze: 256 MB
S bi grai d. p0. sO State: init PO 0 B Size: 2048 MB
S bigraid. p0.sl State: init PO 2048 MB Si ze: 2048 MB
S bi grai d. p0.s2 State: init PO 4096 MB Si ze: 2048 MB
S bigraid. p0.s3 State: init PO 6144 MB Si ze: 2048 MB
S bi grai d. p0. s4 State: init PO 8192 MB Si ze: 2048 MB

Startup

The configuration information is stored on the disk slices in essentially the same form as
in the configuration files, which enables the same routines to be used for initialization.
When reading from the configuration databag®um(8) recognizes a number of



keywords which are not allowed in the configuration files. At a point where the user has
commenced initialization of plexgraid.pQ the configuration database might contain:

drive a state up device /dev/sdOh
drive b state up device /dev/sdlh
drive c state up device /dev/sd2h
drive d state up device /dev/sd3h
drive e state up device /dev/sd4h

vol une nyvol state up

vol une bigraid state down

pl ex name nyvol .p0 state up org concat vol myvo

pl ex name nyvol.pl state up org concat vol nyvo

pl ex name nyvol .p2 state init org striped 512b vol myvo

pl ex name bigraid.pO state initializing org raid5 512b vol bigraid

sd nane nyvol.p0.s0 drive a plex nyvol.pO state up | en 1048576b driveoffset 265
b pl exof fset Ob

sd nane nyvol.p0.s1 drive b plex nyvol.pO state up | en 1048576b dri veoffset 265
b pl exof fset 1048576b

sd nane nyvol.pl.s0 drive c plex nyvol.pl state up | en 1048576b driveoffset 265
b pl exof fset Ob

sd nane nyvol.pl.sl1 drive d plex nyvol.pl state up | en 1048576b driveoffset 265
b pl exof fset 1048576b

sd nane nyvol.p2.s0 drive a plex nyvol.p2 state init |en 524288b driveoffset 10
48841b pl exof fset 0Ob

sd nane nyvol.p2.s1 drive b plex nyvol.p2 state init |en 524288b driveoffset 10
48841b pl exof fset 524288b

sd nane nyvol .p2.s2 drive c plex nyvol.p2 state init |en 524288b driveoffset 10
48841b pl exof fset 1048576b

sd nane nyvol.p2.s3 drive d plex nyvol.p2 state init |en 524288b driveoffset 10
48841b pl exof fset 1572864b

sd nane bigraid.p0.s0 drive a plex bigraid.p0 state initializing | en 4194304b d
riveof fset 1573129b pl exof fset Ob

sd nane bigraid.p0.sl drive b plex bigraid.p0O state initializing | en 4194304b d
riveof fset 1573129b pl exof fset 4194304b

sd nane bigraid.p0.s2 drive ¢ plex bigraid.p0 state initializing | en 4194304b d
riveof fset 1573129b pl exof f set 8388608b

sd nane bigraid.p0.s3 drive d plex bigraid.p0O state initializing | en 4194304b d
riveof fset 1573129b pl exof fset 12582912b

sd nane bigraid.p0.s4 drive e plex bigraid.p0 state initializing | en 4194304b d
riveof fset 1573129b pl exof fset 16777216b

The obvious differences here are the presence of explicit location information and naming
(both of which are also alieed, but discouraged, for use by the user) and the information
on the states (which are notadable to the user).

At system startupyinum reads the configuration database from one oWthem drives.
Under normal circumstances, eachvdroontains an identical cgpof the configuration
database, so it does not matter whichelis read. Aftera aash, havever, Vinum must
determine which dve was updated most recently and read the configuration from this
drive.

Object naming

As described abh@, Vinum assigns default names to x#e and subdisks, although the
may be weridden. Owerriding the default names is not recommend&gderence with
the VERITAS volume managewhich allows arbitary naming of objects, has shown that
this flexibility does not bring a significant advantage, and it can cause confusion.

Names may contain gmon-blank characteibut it is recommended to restrict them to
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letters, digits and the underscore characters. The names of volumes,gptesubdisks
may be up to 64 characters long, and the nameswekdray up to 32 characters long.

After reading the configuration database@jum(8) creates a directorydev/vinum in

which it makes device entries for each volume it finds. It also creates subdirectories
/dev/vinum/vql/dev/vinum/plex/dev/vinum/sdand /dev/vinum/drive in which it stores
device entries for the corresponding objects. The directoftkes/vinum/vol and
/dev/vinum/plexcontain subdirectories representing the hienraroh the plexes and
subdisks attached to them.

After processing the first of the configuration files describedeabbnum creates the
following devices:

/ dev/ vi num

total 5

brwx------ 1 root wheel 25, 0x40000000 Jul 28 10:57 control
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 drive
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 plex
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 sd

drwxr-xr-x 3 root wheel 512 Jul 28 10:57 vol

/dev/vinun dri ve:

total O

brwr----- 1 root operator 4, 39 May 25 12:32 a
brwr----- 1 root operator 4, 15 May 24 14:05 b
brwr----- 1 root operator 4, 23 May 24 14:05 c
brwr----- 1 root operator 4, 31 May 24 14:05 d

/ dev/ vi nuni pl ex:

total O

brwxr-xr-- 1 root wheel 25, 0x10000000 Jul 28 10:57 nyvol.p0
brwxr-xr-- 1 root wheel 25, 0x10010000 Jul 28 10:57 nyvol .pl

[ dev/ vi nun sd:

total O

brwxr-xr-- 1 root wheel 25, 0x20000000 Jul 28 10:57 myvol . p0.s0O
brwxr-xr-- 1 root wheel 25, 0x20100000 Jul 28 10:57 nyvol.p0.s1
brwxr-xr-- 1 root wheel 25, 0x20010000 Jul 28 10:57 myvol.pl.sO
brwxr-xr-- 1 root wheel 25, 0x20110000 Jul 28 10:57 nyvol.pl.sl

/ dev/ vi num vol :

total 1

brwxr-xr-- 1 root wheel 25, 0 Jul 28 10:57 nyvol
drwxr-xr-x 4 root wheel 512 Jul 28 10:57 nyvol . pl ex

/ dev/ vi nuni vol / nyvol . pl ex:

total 2

brwxr-xr-- 1 root wheel 25, 0x10000000 Jul 28 10:57 myvol . p0
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 nyvol . p0. sd
brwxr-xr-- 1 root wheel 25, 0x10010000 Jul 28 10:57 nyvol . pl
drwxr-xr-x 2 root wheel 512 Jul 28 10:57 nyvol . pl.sd

/ dev/ vi nuni vol / nyvol . pl ex/ myvol . p0. sd:

total O

brwxr-xr-- 1 root wheel 25, 0x20000000 Jul 28 10:57 nyvol . p0.s0
brwxr-xr-- 1 root wheel 25, 0x20100000 Jul 28 10:57 myvol . p0.sl

/ dev/ vi nuni vol / nyvol . pl ex/ myvol . pl. sd:
total O

brwxr-xr-- 1 root wheel 25, 0x20010000 Jul 28 10:57 myvol . pl.sO
brwxr-xr-- 1 root wheel 25, 0x20110000 Jul 28 10:57 nyvol.pl.sl

Unlike UNIX drives, Vinum volumes are not partitioned, and thus do not contain a

11



partition table. This has required modification to some disk utilities, notatgwfs
which previously tried to interpret the last letter of\num volume name as a slice
identifier.

Although it is recommended that pés and subdisks should not be allocated specific
names,Vinum drives must be named. This mek it possible to me a dive © a
different location and still recognize it automaticallprive rames may be up to 32
characters long.

The implementation

At the time of writing,Vinum is still in a late implementation stagMany aspects of the
implementation are subject to change. This section examines some of the more
interesting tradeoffs in the implementation.

Where the driver fits

To the operating systerivjnum looks like a Bock device, so it is normally be accessed as
a dock device. Insteadbf operating directly on the diee, it creates me requests and
passes them to the real deviceveils. Conceptuallyt could pass them to oth&inum
devices, though this usage makes no sense and would probably cause profiems.
following figure, borrowed from [McKusicl] shows the standard 4.4BSD 1/O structure:

system call interface to the kernel
active file entries
VNODE layer
socket _ : , VM
NFS local naming (UFS) special devices
raw
network FES LFS cogked . tty swap
protocols MFS disk and | space
ine
network buffer cache tt ot | MMt
interface _ : Y d'sc'pl"?e _
drivers block device drer character device drér
the hardware

Figure 6: Kernel I/O structure, after McKusick et. al.

The following figure shows the I/O structure in FreeBSD after installingm Apart

from the efect of Vinum it shows the gradual lack of distinction between block and
character devices that has occurred since the release of 4.4BSD: FreeBSD implements
disk character devices in the corresponding blockedri

2. This figure is © 1996 Addison-Weglend is reproduced with permission.
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system call interface to the kernel
active file entries
VNODE layer
socket , . : VM
NFS local naming (UFS) special devices
raw
network FES LFS cogked tty s swap
protocols MES disk and space
line mamt
buffer cache iceinli tt gmt.
network | discipline y
interface Vinum block dev Vinum char
drivers block device drier character device oér
the hardware

Figure 7: Kernel 1/0O structur e with Vinum

Design limitations

Vinum was intended to hae & few abitrary limits as possible consistent with aficéént
implementation. Neertheless, a number of limits were imposed in the interests of
efficiengy, mainly in connection with the gece minor number format. These limitations
will no longer be releant after the introduction of a device file system.

Restriction

Reasoning

Fixed maximum number In order to maintain compatibility with otheressions of

of volumes per system.

Fixed number of pbhees
per volume

UNIX, it was considered desirable tcedp the déce
numbers of volume in the traditional 8+8 format (8 bits
major number 8 hits minor number). This restricts the
number of volumes to 25@n view of the fact thatvinum
provides for larger volumes than disks, and current
machines are seldom able to control more than 64 disk
drives, this restriction seems unlikely to becomeess for
some years to come.

Plexes aupply redundangc according to RAID-1. For this
purpose, tw plexes ae sufficient under normal
circumstances. df rebuilding and arch@é purposes,
additional plees can be useful, but it is difficult to find a
situation where more than four pés ae necessary or
useful. Onthe other hand, additional pkes beyond four
bring little advantage for reading and a significant
disadwantage for writing. | believe that eight plges ae
ample.
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Fixed maximum number For similar reasons, the number of subdisks was limited to

of subdisks per plex. 256. It seldom makes sense tovhamore than about 10
subdisks per ple so this restriction does not currently
appear sere. Therds no specific werall limitation on the
number of subdisks.

Minimum device size A device must contain at least 1 MB of storagé€his
assumption mads it possible to dispense with some
boundary condition checks/inum requires 133 kB of disk
space to store the header and configuration information, so
this restriction does not appear serious.

Memory allocation

In order to perform its functionalityvinum allocates a large number of dynamic data
structures. Currentlthese structures are allocated by calliegnkelmal | oc. This is a
potential problem, sincemal | oc interacts with the virtual memory system and may
trigger a pagedult. Thepotential for a deadlock exists if the page fault requires a
transfer to &/inum volume. Itis probably thavinum will modify its allocation stratgy

by reserving a small number ofifters when it starts and using these ifral | oc
request fails.

To cache or not to cache

Traditionally, UNIX block devices are accessed from the file system via caching routines
such adread andbwrite. It is dso possible to access them direchyt this facility is
seldom used. The use of caching enables significant wvepents in performance.

Vinum does not cache the data it passes to tiverltevel drivers. It would also seem
counterproductie © do ©: the data is\ailable in cache alreagdynd the only effect of
caching it a second time would be to use more merttaug causing more frequent cache
misses.

RAID-5 plexes pose a problem to this reasoning. RAID-5 write normally first reads
the parity block, so there might be someadage in caching at least the parity blocks.
This issue has been deferred for further study.

Access optimization

The algorithms for RAID-5 access are surprisingly complicated and require a significant
amount of temporary data storag&o achieve reasonable performance, yhust tale

error recoery strategies into account at albevd. A RAID 5 access can require one or
more of the following actions:

* Normal read All participating subdisks are up, and the transfer can be made directly
to the user buffer.
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* Recoery rad One participating subdisk is dm. To recover data, all the other
subdisks, including the parity subdisk, must be redatle data is rec@red by
exclusie-oring all the other blocks.

* Normal write All the participating subdisks are up. This write proceeds in four
phases:

1. Readhe old contents of each block and the parity block.

2. “Remove’ t he old contents from the parity block with exchesa.
3. “Insert” the nev contents of the block in the parity block, again wikclasive
or.

4.  Writethe nev contents of the data blocks and the parity block. The data block
transfers can be made directly from the user buffer.

* Degraded write where the data block is novadlable. Thisrequires the follwing
steps:

1. Readn all the other data blocks, excluding the parity block.
2. Recreat¢he parity block from the other data blocks and the data to be written.
3.  Writethe parity block.

* Parityless write a write where the parity block is novalable. Thisis in fact the
simplest: just write the data blocks. This can proceed directly from the user buffer.

Combining access strategies
In practice, a transfer request may combine the actiongaboparticular:

* A read request may request reading bothilable data (normal read) and non-
available data (reary read). This can be a problem if the address ranges of the tw
reads do not coincide: the normal read must be extendededotibe address range of
the recwery read, and must thus be performed out of malloced memory.

e Combination of dgraded data block write and normal write. The address ranges of
the reads may also need to be extendedver @ participating blocks.

An exception exists when the transfer is shorter than the width of the stripe and is spread
ove two wubdisks. Inthis case, the subdisk addresses do netlap, so thg are
effectively two separate requests.

Examples

The following examples illustrate these concepts:
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Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5
0x0000 Paity
0x0000 0x1000 0x2000 0x3000
0x1000 Paity

0x4000 0x5000 0x6000 0x7000
0x2000 Paity

0x8000 0x9000 0xa000 0xb000
0x3000 Paity

0xc000 0xd000 0xe000 0xf 000

Paity
0x10000 0x11000 0x12000 0x13000
D Paity block

D Data block inolved in transfer

Figure 8: A sample RAID-5 transfer

This diagram illustrates a number of typical points about RAID-5 transfers. It shows the
beginning of a pl& with five subdisks and a stripe size of 4 kB. The shaded areassho
the area imolved in a transfer of 4.5 kB (9 sectors), starting Eted0xa800 in the plex.

A read of this area generatesotwequests to the Veer-level driver: 4 sectors from
subdisk 4, starting at fset 0x2800, and 5 sectors from subdisk 5, starting afseff
0x2000.

Writing this area is significantly more complicatdeérom a programming standpoint, the
simplest approach is to consider the transfersviddally. This would create the
following requests:

Read the old contents of 4 sectors from subdisk 4, starting at@tf2800.

Read the old contents of 4 sectors from subdisk 3 (the parity disk), startirfgeat of
0x2800.

Perform an xclusive OR of the data read from subdisk 4 with the data read from
subdisk 3, storing the result in subdisk @ata luffer. This efectively ‘‘removes” the
old data from the parity block.

Perform an eclusive OR of the data to be written to subdisk 4 with the data read from
subdisk 3, storing the result in subdisk 8ata luffer. This efectively ‘‘adds’ the
new data to the parity block.

Write the nev data to 4 sectors of subdisk 4, starting at ofise2800.

Write 4 sectors of e parity data to subdisk 3 (the parity disk), starting dsedf
0x2800.
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* Read the old contents of 5 sectors from subdisk 5, starting at@8600.

* Read the old contents of 5 sectors from subdisk 3 (the parity disk), startirfgeat of
0x2000.

* Perform an xclusve OR of the data read from subdisk 5 with the data read from
subdisk 3, storing the result in subdisk @ta luffer. This efectively ‘‘removes” the
old data from the parity block.

* Perform an gclusive OR of the data to be written to subdisk 5 with the data read from
subdisk 3, storing the result in subdisk 8ata luffer. This efectively ‘‘adds’ the
new data to the parity block.

* Write the n&v data to 5 sectors of subdisk 5, starting at ofise2000.

* Write 5 sectors of ne parity data to subdisk 3 (the parity disk), starting dsedf
0x2000.

This approach is clearly suboptimal. The operativolires a total of 8 1/0 operations
and transfers 36 sectors of data.addition, the tw halves of the operation block each
other ance each must access the same data on the parity sub@iskn optimizes this
access in the following manner:

* Read the old contents of 4 sectors from subdisk 4, starting at@tf2800.
* Read the old contents of 5 sectors from subdisk 5, starting at@tf2600.

* Read the old contents of 8 sectors from subdisk 3 (the parity disk), startirfgeat of
0x2000. This represents the complete parity block for the stripe.

* Perform an xclusve OR of the data read from subdisk 4 with the data read from
subdisk 3, starting at iset0x800 into the luffer, and storing the result in the same
place in subdisk 3'data buffer.

* Perform an xclusve OR of the data read from subdisk 5 with the data read from
subdisk 3, starting at the beginning of théfér, and storing the result in the same
place in subdisk 8'data buffer offset.

e Perform an xclusve OR of the data to be written to subdisk 4 with the modified
parity block, starting at &§etOx800 into the luffer, and storing the result in the same
place in subdisk 3'data buffer.

* Perform an xclusve OR of the data to be written to subdisk 5 with the modified
parity block, starting at the beginning of thaffbr, and storing the result in the same
place in subdisk 8'data buffer offset.

* Write the n&v data to 4 sectors of subdisk 4, starting at ofise2800.
* Write the n&v data to 5 sectors of subdisk 5, starting at ofise2000.

* Write the 8 sectors of meparity data to subdisk 3 (the parity disk), starting #eif
0x2000.

This is still a lot of vork, but by comparison with the non-optimized version, the number
of I/O operations has been reduced to 6, and the number of sectors transferred is reduced

17



by 2. The larger thewerlap, the greater thesag. If the request had been for a total of
17 sectors, starting atfe€t0x9800, the unoptimized version would V& performed 12
I/O operations and nved a btal of 68 sectors, while the optimized versiooud
perform 8 I/O operations and n®a btal of 50 sectors.

Degraded read

The following figure illustrates the situation where a data subdisk fails, in this case

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5
0x0000
0x0000 0x1000 0x2000
0x1000
0x4000 0x5000 0x6000
0x2000 Paity
0x8000 0x9000
0x3000 Paity
0xc000 0xd000
Paity
0x10000 0x11000
D Paity block
D Data block inolved in transfer
. Inaccessible data blockviolved in transfer
. Inaccessible data
Figure 9: RAID-5 transfer with inaccessible data block
subdisk 4.

In this case, reading the data from subdisk 5 v&tri Recreatinghe data from subdisk
4, however, requires reading all the remaining subdisks. Specifically,

* Read 4 sectors each from subdisks 1, 2 and 3, starting atGof3800 in each case.
* Read 8 sectors from subdisk 5, starting at ofis&800.
* Clear the user buffer area for the data corresponding to subdisk 4.

* Perform an‘exclusive a’’ operation on this dataulffer with data from subdisks 1, 2,
3, and the last four sectors of the data from subdisk 5.

* Transfer the first 5 sectors of data from the datéeb for subdisk 5 to the
corresponding place in the user data buffer.
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Degraded write

There are tw different scenarios to be considered in grdded write. Referring to the
previous xample, the operations required are a mixture of normal write (for subdisk 5)
and degraded write (for subdisk 4). In detail, the operations are:

* Read 4 sectors each from subdisks 1 and 2, startingsat@2800, into temporary
storage.

* Read 5 sectors from subdisk 3 (parity block), starting fe00x2000, into the
beginning of an 8 sector temporary storage buffer.

* Clear the last 3 sectors of the parity block.
* Read 8 sectors from subdisk 5, starting at ofig2000, into temporary storage.
* “Remuoe’ the first 5 sectors of subdisk 5 data from the parity block witlusive a.

* Reluild the last 3 sectors of the parity block bglesive a of the corresponding data
from subdisks 1, 2, 5 and the data to be written for subdisk 4.

* Write the parity block back to subdisk 3 (8 sectors).
* Write 5 sectors user data to subdisk 5.

Parityless write
Another situation arises when the subdisk containing the parity block fails:

Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5
0x0000 Paity
0x0000 0x1000 0x3000
0x1000 Paity

0x4000 0x5000 0x7000
0x2000

0x8000 0x9000 0xa000 0xb000
0x3000 Paity

0xc000 0xe000 0xf 000

Paity
0x10000 0x12000 0x13000
D Paity block

D Data block inolved in transfer
. Inaccessible data

Figure 10: RAID-5 transfer with inaccessible parity block
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This configuration poses no problems on reading, since all the data is acceSsible.
writing, hawever, it is not possible to write the parity block. It is not possible to veco
from this problem at the time of the write, so the write operation simplifies to writing
only the data blocksThe parity block will be recreated when the subdisk is brought up
again.

Driver structure

One important detail of the nature of the operations which must be performed for RAID-5
access is that thdrequently must be performed indveteps. Thisdoes not match well

with the design of UNIX device drirs: typically the “top half’ 3 of a UNIX device

driver issues I/0O commands and returns to the callbe caller may choose to wait for
completion, but one of the most frequent uses of a bloelceles where the virtual
memory subsystem issues writes and does not wait for completion.

This poses a problem: who issues the second set of requests? Twimdofiossibilities,
listed in order of increasing desirabiligxist:

1. Thetop half can wait for completion of the first set of requests and then launch the
second set before returning to the call@his approach can seriously impact
system performance and possibly cause deadlocks.

2. In a threaded kernel, the strategy routine can create a thread whith far
completion of the first set of requests and starts the second set without impacting
the main thread of the process. At the moment this approach is not possible, since
FreeBSD currently does not pide kernel thread support. It also appearsljik
that it could cause a number of problems in the areas of thread synchronization and
performance.

3. Ownershipof the requests can bé&iven” to another process, which will be
aw&kened when thg complete. Thisprocess can then issue the second set of
requests. Thiapproach is feasible, and it is used by some subsystems, notably
NFS. It does not pose the samevae performance penalty of the pi@us
possibility but it does require that another process be scheduled twicedyr e
1/0.

4, Thesecond set of requests can be launched from the “bottorh dathe drver.
This is potentially dangerous: the interrupt routine must callsther t routine.
While this is not expressly prohibited, teeéar t routine is normally used by the
top half of a dwer, and may call functions which are prohibited in the bottom half.

Currently, Vinum uses the fourth solutionThis works for most dvers, but not for the
Adaptec 154x dvier on a ystem with more than 16 MB memory: since the 154x is an
ISA bus master device, the vl must allocate bounceulfers on machines with more
than 16 MB memory The driver allocates theseuiffers by callingmal | oc, which calls

t sl eep if memory is not ®ailable. Asa result,Vinum cannot be used on a system with

3. UNIX device drvers run in two separate erironments. Thée top half’ runs in the process comte
while the “bottom half runs in the interrupt come Thereare sgere restrictions on the functions
that the bottom half of the a@er can perform.
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an Adaptec 154x and more than 16 MB of memory.

It is possible that this deficiepcpossibly with others li& it, will lead to a change in the
driver structure; gven the current alternates, this would mean a deemon process to
handle the 1/0.

Performance issues

At present no detailled performance measurements bsen made, Ut indications are
that the performance isxy close to what could be expected from the underlying disk
driver performing the same operations\daum performs: in other words, thevehead

of Vinum itself is negligible. Thisdoes not mean thainum has perfect performance:
the choice of requests has a strong impact on ¥eealb subsystem performance, and
there are some known areas which could be iwvgorapon. Inaddition, the user can
influence performance by the design of the volumes.

The following sections examine some factors which influence performance.

The influence of stripe size

In striped and RAID-5 phkes, the stripe size has a significant influence on performance.
In all plex structures except a single-subdiskxp(gvhich by definition is concatenated),

the possibility exists that a single transfer to or fronolume will be remapped into
more than one physical 1/0 request. This igenelesirable in a system without spindle
synchronization, since theaage lateng for multiple transfers is afys larger than the
avaage lateng for single transfers to the same kind of disk handw Wthin the bounds

of the current BSD 1/O architecture (maximum transfer size 128 kB), this increase in
lateny can easily offset anspeed increase in the transférhis is the main reason wh
Vinum does not implement RAID-2 and RAID-3, whictways transfer to all dvies.

In the case of a concatenated plex, this remapping occurs only when a requass @
subdisk boundaryIn a griped or RAID-5 plex, havever, the probability is an werse
function of the stripe sizel-or this reason, a stripe size of 256 kB appears to be optimum:
it is small enough to create a relaly random mapping of file system hot spots to
individual disks, and lge enough to ensure than 95% of all transfevelve anly a
single data subdisk. Preliminary testing has confirmed this recommendation.

The influence of request structure

For concatenated and striped yds, Vinum creates request structures which map directly
to the usetevel request bffers. Theonly additional @erhead is the allocation of the
request structure, and the possibility of imy@raent is correspondingly small.

With RAID-5 plexes, the picture is very ddrent. Thestratgic choices described am
work well when the total request size is less than the stripe wilthcontrast, consider
the following transfer of 32.5 kB, starting from the same offset as the previous examples:
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Offset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5
0x0000 Paity
0x0000 0x1000 0x2000 0x3000
0x1000 Paity

0x4000 0x5000 0x6000 0x7000
0x2000 Paity

0x8000 0x9000 0xa000 0xb000
0x3000 Paity

0xc000 0xd000 0xe000 0xf 000

Paity
0x10000 0x11000 0x12000 0x13000
D Paity block

D Data block inolved in transfer

An optimum approach to reading this data performs a total of 5 I1/O operations, one on
each subdisk. By contrastjinum treats this transfer as three separate transfers, one per
stripe, and thus performs a total of 9 I/O transfers.

In practice, this indiciency should not cause gnproblems: as discussed afep the
optimum stripe size is larger than the maximum transfer size, so this situation does not
arise when an appropriate stripe size is chosen.

Availability

Vinum is currently under gelopment. Analpha version of the base version (without
RAID-5 functionality), running on the FreeBSD operating systemyagdadle under a
Berkelg/-style copyright at [vinum]. The RAID-5 functionality isalable under licence
from Cybernet, Inc. [Cybernet], and is included in thdéetMAX Internet connection
package.

Futur e directions

The current version dfinum implements the core functionalityA number of additional
features are under consideration:

* Hot spae capability: on the failure of a disk &g, the wlume manager automatically
recovers the data to another dei

* Loggng changes to a deaded wlume. Rehilding a ple usually requires copng
the entire wvlume. Ina wlume with a high read to write, if a disk goeswdo
temporarily and then becomes accessibiraffor example, as the result of controller
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failure), most of the data is already present and does not need to be damgthg
pinpoints which blocks require copying in order to bring the staleygdo date.

Snapshot®f a wlume. ltis often useful to freeze the state of a volume, fan®le
for backup purposesA backup of a large volume can &akeveal hours. It can be
inconvenient or impossible to prohibit updates during this tirdesnapshot soles
this problem by maintainingefore images, a opy of the old contents of the modified
data blocks. Access to the ple2ads the blocks from the snapshoipfet contains
the data, and from another pléit does not.

Implementing snapshots Minum alone would sole anly part of the problem: there
must also be a ay to ensure that the data on the file system is consistent from a user
standpoint when the snapshot iseiak Thistask irvolves such components as file
systems and databases and is thus outside the scdipeiof

A SNMP interfacdor central management ¥fnum systems.

A GUI interface is currentlynot planned, though it is relagly simple to program,
since no kernel code is needed. As the numberaibiirés testify a good GUI
interface is apparently very ddult to write, and it tends to glossve important
administratve aspects, so it ot clear that the advantages justify thiogf Onthe
other hand, a graphical output of the configuration could be of advantage.

An extensible UFS It is possible to extend the size of some modern file systems after
they havebeen created. Although UFS (thiNIX Hle Systempreviously called the
Berkeley Fast File System was not designed for such extension, it is trivial to
implement &tensibility. This feature would allw a user to add space to a file system
which is approaching capacity by first adding subdisks to theegplend then
extending the file system.

Remote dataeplication is of interest either for backup purposes or for read-only
access at a remote sité&srom a conceptual viewpoint, it could be aebte by
interfacing to a network drér instead of a local disk aher.

Extending striped and RAID-5 ples is a slav complicated operation, but it is
feasible.
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