vinum (4)

NAME

FreeBSD Kernel Interfaces Manual vinum (4)

vi num- Logical Volume Manager

SYNOPSIS

kl dl oad vi num
kl dl oad Vi num

DESCRIPTION
vi numis a logical volume manager inspired by, but not derived from, the Veritas Volume Manager. It pro-
vides the following features:

» It provides device-independent logical disks, called volumes. Volumes are not restricted to the size of
any disk on the system.

» The volumes consist of one or more plexes, each of which contain the entire address space of a volume.
This represents an implementation of RAID-1 (mirroring). Multiple plexes can also be used for

Increased read throughput. vi numwill read data from the least active disk, so if a volume has plexes
on multiple disks, more data can be read in parallel. vi numreads data from only one plex, but it
writes data to all plexes.

Increased reliability. By storing plexes on different disks, data will remain available even if one of
the plexes becomes unavailable. In comparison with a RAID-5 plex (see below), using multiple
plexes requires more storage space, but gives better performance, particularly in the case of a drive
failure.

Additional plexes can be used for on-line data reorganization. By attaching an additional plex and
subsequently detaching one of the older plexes, data can be moved on-line without compromising
access.

An additional plex can be used to obtain a consistent dump of a file system. By attaching an addi-
tional plex and detaching at a specific time, the detached plex becomes an accurate snapshot of the
file system at the time of detachment.

» Each plex consists of one or more logical disk slices, called subdisks. Subdisks are defined as a contigu-
ous block of physical disk storage. A plex may consist of any reasonable number of subdisks (in other
words, the real limit is not the number, but other factors, such as memory and performance, associated
with maintaining a large number of subdisks).

* A number of mappings between subdisks and plexes are available:

FreeBSD 5.0

Concatenated plexes consist of one or more subdisks, each of which is mapped to a contiguous part
of the plex address space.

Striped plexes consist of two or more subdisks of equal size. The file address space is mapped in
stripes, integral fractions of the subdisk size. Consecutive plex address space is mapped to stripes in
each subdisk in turn. The subdisks of a striped plex must all be the same size.

RAID-5 plexes require at least three equal-sized subdisks. They resemble striped plexes, except that
in each stripe, one subdisk stores parity information. This subdisk changes in each stripe: in the first
stripe, it is the first subdisk, in the second it is the second subdisk, etc. In the event of a single disk
failure, vi numwill recover the data based on the information stored on the remaining subdisks. This
mapping is particularly suited to read-intensive access. The subdisks of a RAID-5 plex must all be
the same size.

5 October 1999 1

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

» Drives are the lowest level of the storage hierarchy. They represent disk special devices.

» vi numoffers automatic startup. Unlike UNIX file systems, vi numvolumes contain all the configura-
tion information needed to ensure that they are started correctly when the subsystem is enabled. This is
also a significant advantage over the Veritas™ File System. This feature regards the presence of the vol-
umes. It does not mean that the volumes will be mounted automatically, since the standard startup proce-
dures with / et ¢/ f st ab perform this function.

KERNEL CONFIGURATION
vi numis currently supplied as a kernel loadable module (kld), and does not require configuration. As with
other Kklds, it is absolutely necessary to match the kld to the version of the operating system. Failure to do so
will cause vi numto issue an error message and terminate.

It is possible to configure vi numin the kernel, but this is not recommended. To do so, add this line to the
kernel configuration file:

pseudo- device Vvinum

DEBUG OPTIONS
The current version of vi num both the kernel module and the user program vi nun(8), include significant
debugging support. It is not recommended to remove this support at the moment.

vi numpreviously required matching debug support between the kernel module and the userland program.
This is no longer required. vi numwas previously available in two versions: a freely available version which
did not contain RAID-5 functionality, and a full version including RAID-5 functionality, which was available
only from Cybernet Systems Inc. The present version of vi numincludes the RAID-5 functionality.

RUNNING VINUM
vi numis part of the base FreeBSD system. It does not require installation. To start it, start the vi numpro-
gram, which will load the kid if it is not already present. Before using vi num it must be configured. See
vi num(8) for information on how to create a vi numconfiguration.

Normally, you start a configured version of vi num at boot time. Set the variable start _vi numin
/etc/rc. conf to YESto start vi numat boot time.

If vi numis loaded as a kld (the recommended way), the vi num st op command will unload it. You can
also do this with the kI dunl oad command.

The kld can only be unloaded when idle, in other words when no volumes are mounted and no other
instances of the vi numprogram are active. Unloading the kld does not harm the data in the volumes.

CONFIGURING AND STARTING OBJECTS
Use the vi num(8) utility to configure and start vi numobjects.

IOCTL CALLS
i oct| calls are intended for the use of the vi numconfiguration program only. They are described in the
header file / sys/ dev/ vi nunf vi num o. h

DISK LABELS
Conventional disk special devices have a disk label in the second sector of the device. See di skl abel (5)
for more details. This disk label describes the layout of the partitions within the device. vi numdoes not
subdivide volumes, so volumes do not contain a physical disk label. For convenience, vi numimplements
the ioctl calls DIOCGDINFO (get disk label), DIOCGPART (get partition information), DIOCWDINFO
(write partition information) and DIOCSDINFO (set partition information). DIOCGDINFO and DIOCG-
PART refer to an internal representation of the disk label which is not present on the volume. As a result, the

FreeBSD 5.0 5 October 1999 2

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

—r option of di skl abel (8), which reads the “raw disk”, will fail.

In general, di skl abel (8) serves no useful purpose on a vinum volume. If you run it, it will show you
three partitions, a, b and c, all the same except for the fstype, for example:

3 partitions:

si ze of f set fstype [fsize bsize bps/cpg]
a: 2048 0 4. 2BSD 1024 8192 0 # (Cyl. 0 - 0)
b: 2048 0 swap # (Cyl. 0- 0
C: 2048 0 unused 0 0 # (Cyl. 0- 0
vinum ignores the DIOCWDINFO and DIOCSDINFO ioctls, since there is nothing to change. As a result,

any attempt to modify the disk label will be silently ignored.

MAKING FILE SYSTEMS
Since vinum volumes do not contain partitions, the names do not need to conform to the standard rules for
naming disk partitions. For a physical disk partition, the last letter of the device name specifies the partition
identifier (a to h). vinum volumes need not conform to this convention, but if they do not, newfs will com-
plain that it cannot determine the partition. To solve this problem, use the —v flag to newfs. For example,
if you have a volume concat , use the following command to create a ufs file system on it:

newfs -v /dev/vinum concat

OBJECT NAMING
vinum assigns default names to plexes and subdisks, although they may be overridden. We do not recom-
mend overriding the default names. Experience with the Veritas™ volume manager, which allows arbitary
naming of objects, has shown that this flexibility does not bring a significant advantage, and it can cause con-
fusion.

Names may contain any non-blank character, but it is recommended to restrict them to letters, digits and the
underscore characters. The names of volumes, plexes and subdisks may be up to 64 characters long, and the
names of drives may up to 32 characters long. When choosing volume and plex names, bear in mind that
automatically generated plex and subdisk names are longer than the name from which they are derived.

* When vi num(8) creates or deletes objects, it creates a directory / dev/ vi num in which it makes
device entries for each volume. It also creates the subdirectories / dev/vi nunm pl ex and
/ dev/ vi nunt sd, in which it stores device entries for the plexes and subdisks. In addition, it creates
two more directories, / dev/ vi nuni vol and / dev/ vi nunt dri ve, in which it stores hierarchical
information for volumes and drives.

* In addition, vinum creates two super-devices, / dev/ vi nunf cont r ol and
/ dev/ vi nuni cont r ol d. / dev/ vi num contr ol is used by vinum8), and
/ dev/ vi nuni cont r ol d is used by the vinum daemon.

» Unlike UNIX drives, vinum volumes are not subdivided into partitions, and thus do not contain a disk
label. Unfortunately, this confuses a number of utilities, notably newfs, which normally tries to inter-
pret the last letter of a vinum volume name as a partition identifier. If you use a volume name which
does not end in the letters a to ¢, you must use the —v flag to newfs in order to tell it to ignore this con-
vention.

» Plexes do not need to be assigned explicit names. By default, a plex name is the name of the volume fol-
lowed by the letters . p and the number of the plex. For example, the plexes of volume vol 3 are called
vol 3. p0, vol 3. pl and so on. These names can be overridden, but it is not recommended.

FreeBSD 5.0 5 October 1999 3

vinum (4)

FreeBSD Kernel Interfaces Manual

vinum

(4)

» Like plexes, subdisks are assigned names automatically, and explicit naming is discouraged. A subdisk
name is the name of the plex followed by the letters . s and a number identifying the subdisk. For exam-
ple, the subdisks of plex vol 3. p0 arecaled vol 3. p0. s0O, vol 3. p0. s1 and so on.

* By contrast, dri ves must be named. This makes it possible to move a drive to a different location and
still recognize it automatically. Drive names may be up to 32 characters long.

EXAMPLE

Assume the vi numobjects described in the section CONFIGURATION FILE in vi num(8). The directory
/ dev/ vi numlooks like:

FreeBSD 5.0

1s -1 R /dev/vinum

total 5

Crwxr-xr-- 1 root
Crwx------ 1 root
Crwx------ 1 root
dr wxr wxrwx 2 root
dr wxr wxrwx 2 root
dr wxr wxrwx 2 root
dr wxr wxrwx 2 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
dr wxr wxrwx 7 root
Crwxr-xr-- 1 root

/dev/vinum dri ve

total O
CrWr----- 1 root
CrWr----- 1 root

/ dev/ vi nuni pl ex:
total O

Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
/ dev/ vi num sd
total O

Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root
Crwxr-xr-- 1 root

wheel 91, 2 Mar 30
wheel 91, 0x40000000
wheel 91, 0x40000001
wheel 512 Mar 30
wheel 512 Mar 30
wheel 512 Mar 30
wheel 512 Mar 30
wheel 91, 3 Mar 30
wheel 91, 1 Mar 30
wheel 91, 0 Mar 30
wheel 512 Mar 30
wheel 91, 4 Mar 30
oper at or 4, 15 COct
oper at or 4, 31 COct
wheel 91, 0x10000002
wheel 91, 0x10010002
wheel 91, 0x10000003
wheel 91, 0x10010003
wheel 91, 0x10000001
wheel 91, 0x10000000
wheel 91, 0x10000004
wheel 91, 0x10010004
wheel 91, 0x20000002
wheel 91, 0x20100002
wheel 91, 0x20010002
wheel 91, 0x20000003
wheel 91, 0x20100003
wheel 91, 0x20010003
wheel 91, 0x20110003
wheel 91, 0x20000001
5 October 1999

16: 08 concat
30 16:08 control

30 16:08 controld
drive

Mar
Mar
16:
16:
16:
16:
16:
16:
16:
16:
16:

21
21

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

Mar
Mar
Mar
Mar
Mar
Mar
Mar
Mar

08
08
08
08
08
08
08
08
08

16:
16:

30
30
30
30
30
30
30
30

30
30
30
30
30
30
30
30

pl ex
rvol

sd

strcon
stripe

tinyvol

vol

vol 5

51 drive2
51 drive4d

16:
16:
16:
16:
16:
16:
16:
16:

16:
16:
16:
16:
16:
16:
16:
16:

08
08
08
08
08
08
08
08

08
08
08
08
08
08
08
08

concat . p0
concat . pl
strcon. p0
strcon. pl
stripe. p0
tinyvol . pO
vol 5. p0
vol 5. pl

concat.
concat.
concat.
strcon.
strcon.
strcon.
strcon.
stripe.

.s0
.sl
.s0
.s0
.sl
.s0
.sl
.s0

vinum (4)

FreeBSD 5.0

FreeBSD Kernel Interfaces Manual

Crwxr-xr-- 1 root wheel 91, 0x20100001
Crwxr-xr-- 1 root wheel 91, 0x20000000
Crwxr-xr-- 1 root wheel 91, 0x20100000
Crwxr-xr-- 1 root wheel 91, 0x20000004
Crwxr-xr-- 1 root wheel 91, 0x20100004
Crwxr-xr-- 1 root wheel 91, 0x20010004
Crwxr-xr-- 1 root wheel 91, 0x20110004
/ dev/ vi num vol

total 5

Crwxr-xr-- 1 root wheel 91, 2 Mar 30
drwxr-xr-x 4 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 3 Mar 30
drwxr-xr-x 4 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 1 Mar 30
drwxr-xr-x 3 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 0 Mar 30
drwxr-xr-x 3 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 4 Mar 30
drwxr-xr-x 4 root wheel 512 Mar 30
/ dev/ vi nuni vol / concat . pl ex:

total 2

Crwxr-xr-- 1 root wheel 91, 0x10000002
drwxr-xr-x 2 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 0x10010002
drwxr-xr-x 2 root wheel 512 Mar 30

/ dev/ vi nuni vol / concat . pl ex/ concat . p0. sd:

total O
crwxr-xr-- 1 root wheel 91, 0x20000002
crwxr-xr-- 1 root wheel 91, 0x20100002

/ dev/ vi nuni vol / concat . pl ex/ concat . p1. sd:

total O
Cr WXT - X[- -

1

r oot

wheel

91, 0x20010002

/ dev/ vi nuni vol / strcon. pl ex:

total 2

Crwxr-xr-- 1 root wheel 91, 0x10000003
drwxr-xr-x 2 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 0x10010003
drwxr-xr-x 2 root wheel 512 Mar 30

/ dev/ vi nuni vol / strcon. pl ex/ strcon. p0. sd:

total O
crwxr-xr-- 1 root wheel 91, 0x20000003
crwxr-xr-- 1 root wheel 91, 0x20100003

/ dev/ vi nunivol / strcon. pl ex/ strcon. pl. sd:
total O
CrWXT - X - - wheel

1 root 91, 0x20010003

5 October 1999

Mar 30 16:08 stripe.p0.sl
Mar 30 16:08 tinyvol.p0.sO
Mar 30 16:08 tinyvol.p0.sl
Mar 30 16: 08 vol 5. p0. s0
Mar 30 16: 08 vol 5. p0.s1
Mar 30 16: 08 vol 5. pl.s0
Mar 30 16:08 vol 5. pl.s1
16: 08 concat

16: 08 concat. pl ex

16: 08 strcon

16: 08 strcon. pl ex

16: 08 stripe

16: 08 stripe. pl ex

16: 08 tinyvol

16: 08 tinyvol. pl ex

16: 08 vol 5

16: 08 vol 5. pl ex

Mar 30 16: 08 concat. p0
16: 08 concat. p0. sd

Mar 30 16: 08 concat. pl
16: 08 concat. pl. sd

Mar 30 16: 08 concat. p0. sO
Mar 30 16: 08 concat. p0.sl
Mar 30 16: 08 concat. pl.sO
Mar 30 16: 08 strcon. p0
16: 08 strcon. p0. sd

Mar 30 16: 08 strcon.pl
16: 08 strcon. pl. sd

Mar 30 16: 08 strcon. p0.s0
Mar 30 16:08 strcon.p0.sl
Mar 30 16:08 strcon. pl.sO

vinum (4)

vinum (4)

In the case of unattached plexes and subdisks, the naming is reversed.

FreeBSD Kernel Interfaces Manual

crwxr-xr-- 1 root wheel 91, 0x20110003

/ dev/ vi nunivol / stri pe. pl ex:

total 1
crwxr-xr-- 1 root wheel 91, 0x10000001
drwxr-xr-x 2 root wheel 512 Mar 30

[dev/vi nunivol /stri pe. pl ex/stri pe. p0. sd:
total O

Crwxr-xr-- 1 root wheel 91, 0x20000001
Crwxr-xr-- 1 root wheel 91, 0x20100001

/ dev/vi nunivol /tinyvol . pl ex:

total 1
crwxr-xr-- 1 root wheel 91, 0x10000000
drwxr-xr-x 2 root wheel 512 Mar 30

[dev/vi nunivol /tinyvol . plex/tinyvol.p0. sd:
total O

Crwxr-xr-- 1 root wheel 91, 0x20000000
Crwxr-xr-- 1 root wheel 91, 0x20100000

/ dev/ vi nuni vol /vol 5. pl ex:

total 2

Crwxr-xr-- 1 root wheel 91, 0x10000004
drwxr-xr-x 2 root wheel 512 Mar 30
Crwxr-xr-- 1 root wheel 91, 0x10010004
drwxr-xr-x 2 root wheel 512 Mar 30

/ dev/ vi nuni vol /vol 5. pl ex/ vol 5. p0. sd:

total O

Crwxr-xr-- 1 root wheel 91, 0x20000004
Crwxr-xr-- 1 root wheel 91, 0x20100004

/ dev/ vi nunivol /vol 5. pl ex/ vol 5. p1. sd:

total O

Crwxr-xr-- 1 root wheel 91, 0x20010004
Crwxr-xr-- 1 root wheel 91, 0x20110004

vinum (4)

Mar 30 16:08 strcon.pl.sl

Mar 30 16:08 stripe. p0
16: 08 stripe. p0. sd

Mar 30 16:08 stripe. p0.s0
Mar 30 16:08 stripe.p0.sl

Mar 30 16:08 tinyvol.p0
16: 08 tinyvol . pO. sd

Mar 30 16:08 tinyvol.p0.sO
Mar 30 16:08 tinyvol.p0.sl

Mar 30 16:08 vol 5. p0
16: 08 vol 5. p0. sd
Mar 30 16: 08 vol 5. pl
16: 08 vol 5. pl. sd

Mar 30 16: 08 vol 5. p0. s0
Mar 30 16: 08 vol 5. p0. sl

Mar 30 16: 08 vol 5. pl.s0
Mar 30 16:08 vol 5. pl.s1

Subdisks are named after the disk on

which they are located, and plexes are named after the subdisk. This mapping is still to be
det er m ned.

OBJECT STATES

Each vi numobject has a state associated with it. vi numuses this state to determine the handling of the

object.
VOLUME

STATES

Volumes may have the following states:

FreeBSD 5.0

5 October 1999

vinum (4)

down
up

PLEX STATES

FreeBSD Kernel Interfaces Manual vinum (4)

The volume is completely inaccessible.

The volume is up and at least partially functional. Not all plexes may be available.

Plexes may have the following states:

r ef erenced

faulty

down

A plex entry which has been referenced as part of a volume, but which is currently not
known.

A plex which has gone completely down because of 1/O errors.

A plex which has been taken down by the administrator.

i nitializingA plexwhich is being initialized.

cor rupt

degr aded

fl aky

up

SUBDISK STATES

The remaining states represent plexes which are at least partially up.

A plex entry which is at least partially up. Not all subdisks are available, and an inconsis-
tency has occurred. If no other plex is uncorrupted, the volume is no longer consistent.

A RAID-5 plex entry which is accessible, but one subdisk is down, requiring recovery for
many |/O requests.

A plex which is really up, but which has a reborn subdisk which we don’t completely
trust, and which we don’t want to read if we can avoid it.

A plex entry which is completely up. All subdisks are up.

Subdisks can have the following states:

enpty

r ef erenced

A subdisk entry which has been created completely. All fields are correct, and the disk
has been updated, but the on the disk is not valid.

A subdisk entry which has been referenced as part of a plex, but which is currently not
known.

i nitializing A subdisk entry which has been created completely and which is currently being initial-

obsol ete

stal e

FreeBSD 5.0

ized.

The following states represent invalid data.

A subdisk entry which has been created completely. All fields are correct, the config on
disk has been updated, and the data was valid, but since then the drive has been taken
down, and as a result updates have been missed.

A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has been crashed and
updates have been lost.

The following states represent valid, inaccessible data.

5 October 1999 7

vinum (4)

crashed

down

reviving

reborn

up

DRIVE STATES

FreeBSD Kernel Interfaces Manual vinum (4)

A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has gone down. No attempt
has been made to write to the subdisk since the crash, so the data is valid.

A subdisk entry which was up, which contained valid data, and which was taken down by
the administrator. The data is valid.

The subdisk is currently in the process of being revived. We can write but not read.

The following states represent accessible subdisks with valid data.

A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has gone down and up again.
No updates were lost, but it is possible that the subdisk has been damaged. We won’t read
from this subdisk if we have a choice. If this is the only subdisk which covers this address
space in the plex, we set its state to up under these circumstances, so this status implies
that there is another subdisk to fulfil the request.

A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data is valid.

Drives can have the following states:

ref erenced

down

up

BUGS

At least one subdisk refers to the drive, but it is not currently accessible to the system. No
device name is known.

The drive is not accessible.

The drive is up and running.

1. vinumis a new product. Bugs can be expected. The configuration mechanism is not yet fully func-
tional. If you have difficulties, please look at the section DEBUGGING PROBLEMS WITH VINUM
before reporting problems.

2. Kernels with the vi numpseudo-device appear to work, but are not supported. If you have trouble with
this configuration, please first replace the kernel with a non-Vinum kernel and test with the kld module.

3. Detection of differences between the version of the kernel and the kld is not yet implemented.

4. The RAID-5 functionality is new in FreeBSD 3.3. Some problems have been reported with vi numin
combination with soft updates, but these are not reproducible on all systems. If you are planning to use
Vi numin a production environment, please test carefully.

DEBUGGING PROBLEMS WITH VINUM
Solving problems with vi numcan be a difficult affair. This section suggests some approaches.

Configuration problems

FreeBSD 5.0

5 October 1999 8

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

It is relatively easy (too easy) to run into problems with the vi numconfiguration. If you do, the first thing
you should do is stop configuration updates:

vinum setdaemon 4

This will stop updates and any further corruption of the on-disk configuration.

Next, look at the on-disk configuration with the V i num du npco nfi 0 command, for example:

vinum dumpconfig
Drive 4: Devi ce /dev/ dash
Greated on crash.lenis.comat Sat My 20 16:32:44 2000
Config last updated Sat May 20 16:32:56 2000
size: 601052160 bytes (573 MB)
vol une obj state up
vol ume src state up
volune raid state down
volune r state down
vol une foo state up
plex name obj.p0 state corrupt org concat vol obj
plex name obj.pl state corrupt org striped 128b vol obj
plex name src.p0 state corrupt org striped 128b vol src
plex name src.pl state up org concat vol src
plex name raid.p0 state faulty org disorg vol raid
plex name r.po state faulty org disorg vol r
plex name foo.p0 state up org concat vol foo
plex name foo.pl state faulty org concat vol foo
sd nane obj.p0.sO drive drive2 plex obj.p0 state reborn Ien 409600b driveof fset 265b plexoffset Ob
sd nane obj.p0.s1 drive drive4 plex obj.p0 state up |en 409600b driveoffset 265b plexof fset 409600b
sd nane obj.pl.sO drive drivel plex obj.pl state up len 204800b driveoffset 265b plexoffset Ob
sd nane obj.pl.sl drive drive2 plex obj.pl state reborn |en 204800b driveoffset 409865b plexof fset 128b
sd nane obj.pl.s2 drive drive3 plex obj.pl state up len 204800b driveoffset 265b plexoffset 256b

sd name obj.pl.s3 drive drived plex obj.pl state up |en 204800b driveoffset 409865b plexof fset 384b

The configuration on all disks should be the same. If this is not the case, please save the output to a file and report the problem. There is probably little that can be done to recover the on-disk configuration, but if you keep a copy of the files sed to create the objects, you

should be able to re-create them. The C r e a.t e command does not change the subdisk data, so this will not cause data corruption. You may need to use the r e S et C 0 nf I g command if you have this kind of trouble.

Kernel Panics

In order to analyse a panic which you suspect comes from Vi num you will need to build a debug kernel. See the online handbook at
[usr/ shar e/ doc/ handbook/ ker nel debug. ht m " insaled o
htt p: / / www. Fr eeBSD. or g/ handbook/ ker nel debug. ht M w meedisorovosom

Perform the following steps to analyse a V/ | 11 U M brobtem:

Lo e fies [usr/src/sys/ nodul es/ vi num . gdbinit. crash
[usr/src/sys/ nodul es/ vi num . gdbi ni t. ker nel
[usr/src/sys/ nodul es/vi num . gdbinit.serial.
[usr/src/sys/ nodul es/ vi num . gdbi ni t.vi num w
[usr/src/sys/ nodul es/ vi nun . gdbi ni t. vi num pat NS « ne oy in wrier you win e perfoming e anatysis, wpicaty
/var/crash

2. Make sure that you build the \/ | 11 U T nodue with debugging information. The standard Makef i | € wicsa mote win debugging symbols by defautt. If the version of V | Ul m./ modul €S weno

contain symbols, you will not get an error message, but the stack trace will not show the symbols. Check the module before starting g db.

$ file /nodul es/vi num ko
/ modul es/ vi num ko: ELF 32-bit LSB shared object, Intel 80386,

version 1 (FreeBSD), not stripped

If the output shows that /rTDdUI eS/ Vi num kO is stripped, you will have to find a version which is not. Usually this will be either
/usr/obj/sys/modul es/vinum vinumKko « s me we ViNUM w . mMake world, «
fusr/src/sys/ nodul es/vi numl vinum KO &y me o VI NUM 0 o ey wosty e fie
. gdbi ni t. vi num pat hS g,

FreeBSD 5.0 5 October 1999 9

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

3. Either take a dump or use remote serial gdb o analyse the problem. To analyse & dump, say /var/crash/vntore.5
[var/crash/.gdbinit.crash./var/crash/.gdbinit weme

cd /var/crash

gdb -k kernel . debug vrcore. 5
This example assumes that you have installed the correct debug kernel «/var/ crash/ kernel . debu 0. 1 not substitute the correct name of the debug kernel

Topertomremteseia g 1ok / V@ / Cr-@ash/ . gdbi nit. serial o/ var/crash/.gdbinit and enter

cd /var/crash

gdb -k kernel . debug

In this case, the « gdbl N T fite pertorms the functions necessary to establish connection. Theremotemachmemuslalreadybeindehugmode'enterthekemeldebuggerandselectgdb The serial » gdb| NI T e expects

{he serial connection to run at 38400 bis per second; if you run at a ifferent speed, dit he file accordingly (look for e | €MD T € baud specification)

The following example shows a remote debugging session using the debu g commandot VI MU rﬂS)

. gdbinit

bt

Reporting problems with Vinum
Vi num
e vinum i st

o _/var/log/ nmessages.__.vi num.

FreeBSD 5.0 5 October 1999 10

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

AUTHOR

HISTORY
Vi num Vi num__wwv. cyber net. com.

SEE ALSO
vi nunB)di skl abel 5)di skl abel 8)newf s8)

FreeBSD 5.0 5 October 1999 11

