
vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

NAME
vinum − Logical Volume Manager

SYNOPSIS
kldload vinum
kldload Vinum

DESCRIPTION
vinum is a logical volume manager inspired by, but not derived from, the Veritas Volume Manager. It pro-
vides the following features:

• It provides device-independent logical disks, called volumes. Volumes are not restricted to the size of
any disk on the system.

• The volumes consist of one or more plexes, each of which contain the entire address space of a volume.
This represents an implementation of RAID-1 (mirroring). Multiple plexes can also be used for

• Increased read throughput. vinum will read data from the least active disk, so if a volume has plexes
on multiple disks, more data can be read in parallel. vinum reads data from only one plex, but it
writes data to all plexes.

• Increased reliability. By storing plexes on different disks, data will remain available even if one of
the plexes becomes unavailable. In comparison with a RAID-5 plex (see below), using multiple
plexes requires more storage space, but gives better performance, particularly in the case of a drive
failure.

• Additional plexes can be used for on-line data reorganization. By attaching an additional plex and
subsequently detaching one of the older plexes, data can be moved on-line without compromising
access.

• An additional plex can be used to obtain a consistent dump of a file system. By attaching an addi-
tional plex and detaching at a specific time, the detached plex becomes an accurate snapshot of the
file system at the time of detachment.

• Each plex consists of one or more logical disk slices, called subdisks. Subdisks are defined as a contigu-
ous block of physical disk storage. A plex may consist of any reasonable number of subdisks (in other
words, the real limit is not the number, but other factors, such as memory and performance, associated
with maintaining a large number of subdisks).

• A number of mappings between subdisks and plexes are available:

• Concatenated plexes consist of one or more subdisks, each of which is mapped to a contiguous part
of the plex address space.

• Striped plexes consist of two or more subdisks of equal size. The file address space is mapped in
stripes, integral fractions of the subdisk size. Consecutive plex address space is mapped to stripes in
each subdisk in turn. The subdisks of a striped plex must all be the same size.

• RAID-5 plexes require at least three equal-sized subdisks. They resemble striped plexes, except that
in each stripe, one subdisk stores parity information. This subdisk changes in each stripe: in the first
stripe, it is the first subdisk, in the second it is the second subdisk, etc. In the event of a single disk
failure, vinum will recover the data based on the information stored on the remaining subdisks. This
mapping is particularly suited to read-intensive access. The subdisks of a RAID-5 plex must all be
the same size.

FreeBSD 5.0 5 October 1999 1

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

• Drives are the lowest level of the storage hierarchy. They represent disk special devices.

• vinum offers automatic startup. Unlike UNIX file systems, vinum volumes contain all the configura-
tion information needed to ensure that they are started correctly when the subsystem is enabled. This is
also a significant advantage over the Veritas™ File System. This feature regards the presence of the vol-
umes. It does not mean that the volumes will be mounted automatically, since the standard startup proce-
dures with /etc/fstab perform this function.

KERNEL CONFIGURATION
vinum is currently supplied as a kernel loadable module (kld), and does not require configuration. As with
other klds, it is absolutely necessary to match the kld to the version of the operating system. Failure to do so
will cause vinum to issue an error message and terminate.

It is possible to configure vinum in the kernel, but this is not recommended. To do so, add this line to the
kernel configuration file:

pseudo-device vinum

DEBUG OPTIONS
The current version of vinum, both the kernel module and the user program vinum(8), include significant
debugging support. It is not recommended to remove this support at the moment.

vinum previously required matching debug support between the kernel module and the userland program.
This is no longer required. vinum was previously available in two versions: a freely available version which
did not contain RAID-5 functionality, and a full version including RAID-5 functionality, which was available
only from Cybernet Systems Inc. The present version of vinum includes the RAID-5 functionality.

RUNNING VINUM
vinum is part of the base FreeBSD system. It does not require installation. To start it, start the vinum pro-
gram, which will load the kld if it is not already present. Before using vinum, it must be configured. See
vinum(8) for information on how to create a vinum configuration.

Normally, you start a configured version of vinum at boot time. Set the variable start_vinum in
/etc/rc.conf to YES to start vinum at boot time.

If vinum is loaded as a kld (the recommended way), the vinum stop command will unload it. You can
also do this with the kldunload command.

The kld can only be unloaded when idle, in other words when no volumes are mounted and no other
instances of the vinum program are active. Unloading the kld does not harm the data in the volumes.

CONFIGURING AND STARTING OBJECTS
Use the vinum(8) utility to configure and start vinum objects.

IOCTL CALLS
ioctl calls are intended for the use of the vinum configuration program only. They are described in the
header file /sys/dev/vinum/vinumio.h

DISK LABELS
Conventional disk special devices have a disk label in the second sector of the device. See disklabel(5)
for more details. This disk label describes the layout of the partitions within the device. vinum does not
subdivide volumes, so volumes do not contain a physical disk label. For convenience, vinum implements
the ioctl calls DIOCGDINFO (get disk label), DIOCGPART (get partition information), DIOCWDINFO
(write partition information) and DIOCSDINFO (set partition information). DIOCGDINFO and DIOCG-
PART refer to an internal representation of the disk label which is not present on the volume. As a result, the

FreeBSD 5.0 5 October 1999 2

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

−r option of disklabel(8), which reads the ‘‘raw disk’’, will fail.

In general, disklabel(8) serves no useful purpose on a vinum volume. If you run it, it will show you
three partitions, a, b and c, all the same except for the fstype, for example:

3 partitions:
size offset fstype [fsize bsize bps/cpg]
a: 2048 0 4.2BSD 1024 8192 0 # (Cyl. 0 - 0)
b: 2048 0 swap # (Cyl. 0 - 0)
c: 2048 0 unused 0 0 # (Cyl. 0 - 0)

vinum ignores the DIOCWDINFO and DIOCSDINFO ioctls, since there is nothing to change. As a result,
any attempt to modify the disk label will be silently ignored.

MAKING FILE SYSTEMS
Since vinum volumes do not contain partitions, the names do not need to conform to the standard rules for
naming disk partitions. For a physical disk partition, the last letter of the device name specifies the partition
identifier (a to h). vinum volumes need not conform to this convention, but if they do not, newfs will com-
plain that it cannot determine the partition. To solve this problem, use the −v flag to newfs. For example,
if you have a volume concat, use the following command to create a ufs file system on it:

newfs -v /dev/vinum/concat

OBJECT NAMING
vinum assigns default names to plexes and subdisks, although they may be overridden. We do not recom-
mend overriding the default names. Experience with the Veritas™ volume manager, which allows arbitary
naming of objects, has shown that this flexibility does not bring a significant advantage, and it can cause con-
fusion.

Names may contain any non-blank character, but it is recommended to restrict them to letters, digits and the
underscore characters. The names of volumes, plexes and subdisks may be up to 64 characters long, and the
names of drives may up to 32 characters long. When choosing volume and plex names, bear in mind that
automatically generated plex and subdisk names are longer than the name from which they are derived.

• When vinum(8) creates or deletes objects, it creates a directory /dev/vinum, in which it makes
device entries for each volume. It also creates the subdirectories /dev/vinum/plex and
/dev/vinum/sd, in which it stores device entries for the plexes and subdisks. In addition, it creates
two more directories, /dev/vinum/vol and /dev/vinum/drive, in which it stores hierarchical
information for volumes and drives.

• In addition, vinum creates two super-devices, /dev/vinum/control and
/dev/vinum/controld. /dev/vinum/control is used by vinum(8), and
/dev/vinum/controld is used by the vinum daemon.

• Unlike UNIX drives, vinum volumes are not subdivided into partitions, and thus do not contain a disk
label. Unfortunately, this confuses a number of utilities, notably newfs, which normally tries to inter-
pret the last letter of a vinum volume name as a partition identifier. If you use a volume name which
does not end in the letters a to c, you must use the −v flag to newfs in order to tell it to ignore this con-
vention.

• Plexes do not need to be assigned explicit names. By default, a plex name is the name of the volume fol-
lowed by the letters .p and the number of the plex. For example, the plexes of volume vol3 are called
vol3.p0, vol3.p1 and so on. These names can be overridden, but it is not recommended.

FreeBSD 5.0 5 October 1999 3

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

• Like plexes, subdisks are assigned names automatically, and explicit naming is discouraged. A subdisk
name is the name of the plex followed by the letters .s and a number identifying the subdisk. For exam-
ple, the subdisks of plex vol3.p0 are called vol3.p0.s0, vol3.p0.s1 and so on.

• By contrast, drives must be named. This makes it possible to move a drive to a different location and
still recognize it automatically. Drive names may be up to 32 characters long.

EXAMPLE

Assume the vinum objects described in the section CONFIGURATION FILE in vinum(8). The directory
/dev/vinum looks like:

ls -lR /dev/vinum
total 5
crwxr-xr-- 1 root wheel 91, 2 Mar 30 16:08 concat
crwx------ 1 root wheel 91, 0x40000000 Mar 30 16:08 control
crwx------ 1 root wheel 91, 0x40000001 Mar 30 16:08 controld
drwxrwxrwx 2 root wheel 512 Mar 30 16:08 drive
drwxrwxrwx 2 root wheel 512 Mar 30 16:08 plex
drwxrwxrwx 2 root wheel 512 Mar 30 16:08 rvol
drwxrwxrwx 2 root wheel 512 Mar 30 16:08 sd
crwxr-xr-- 1 root wheel 91, 3 Mar 30 16:08 strcon
crwxr-xr-- 1 root wheel 91, 1 Mar 30 16:08 stripe
crwxr-xr-- 1 root wheel 91, 0 Mar 30 16:08 tinyvol
drwxrwxrwx 7 root wheel 512 Mar 30 16:08 vol
crwxr-xr-- 1 root wheel 91, 4 Mar 30 16:08 vol5

/dev/vinum/drive:
total 0
crw-r----- 1 root operator 4, 15 Oct 21 16:51 drive2
crw-r----- 1 root operator 4, 31 Oct 21 16:51 drive4

/dev/vinum/plex:
total 0
crwxr-xr-- 1 root wheel 91, 0x10000002 Mar 30 16:08 concat.p0
crwxr-xr-- 1 root wheel 91, 0x10010002 Mar 30 16:08 concat.p1
crwxr-xr-- 1 root wheel 91, 0x10000003 Mar 30 16:08 strcon.p0
crwxr-xr-- 1 root wheel 91, 0x10010003 Mar 30 16:08 strcon.p1
crwxr-xr-- 1 root wheel 91, 0x10000001 Mar 30 16:08 stripe.p0
crwxr-xr-- 1 root wheel 91, 0x10000000 Mar 30 16:08 tinyvol.p0
crwxr-xr-- 1 root wheel 91, 0x10000004 Mar 30 16:08 vol5.p0
crwxr-xr-- 1 root wheel 91, 0x10010004 Mar 30 16:08 vol5.p1

/dev/vinum/sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000002 Mar 30 16:08 concat.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100002 Mar 30 16:08 concat.p0.s1
crwxr-xr-- 1 root wheel 91, 0x20010002 Mar 30 16:08 concat.p1.s0
crwxr-xr-- 1 root wheel 91, 0x20000003 Mar 30 16:08 strcon.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100003 Mar 30 16:08 strcon.p0.s1
crwxr-xr-- 1 root wheel 91, 0x20010003 Mar 30 16:08 strcon.p1.s0
crwxr-xr-- 1 root wheel 91, 0x20110003 Mar 30 16:08 strcon.p1.s1
crwxr-xr-- 1 root wheel 91, 0x20000001 Mar 30 16:08 stripe.p0.s0

FreeBSD 5.0 5 October 1999 4

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

crwxr-xr-- 1 root wheel 91, 0x20100001 Mar 30 16:08 stripe.p0.s1
crwxr-xr-- 1 root wheel 91, 0x20000000 Mar 30 16:08 tinyvol.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100000 Mar 30 16:08 tinyvol.p0.s1
crwxr-xr-- 1 root wheel 91, 0x20000004 Mar 30 16:08 vol5.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100004 Mar 30 16:08 vol5.p0.s1
crwxr-xr-- 1 root wheel 91, 0x20010004 Mar 30 16:08 vol5.p1.s0
crwxr-xr-- 1 root wheel 91, 0x20110004 Mar 30 16:08 vol5.p1.s1

/dev/vinum/vol:
total 5
crwxr-xr-- 1 root wheel 91, 2 Mar 30 16:08 concat
drwxr-xr-x 4 root wheel 512 Mar 30 16:08 concat.plex
crwxr-xr-- 1 root wheel 91, 3 Mar 30 16:08 strcon
drwxr-xr-x 4 root wheel 512 Mar 30 16:08 strcon.plex
crwxr-xr-- 1 root wheel 91, 1 Mar 30 16:08 stripe
drwxr-xr-x 3 root wheel 512 Mar 30 16:08 stripe.plex
crwxr-xr-- 1 root wheel 91, 0 Mar 30 16:08 tinyvol
drwxr-xr-x 3 root wheel 512 Mar 30 16:08 tinyvol.plex
crwxr-xr-- 1 root wheel 91, 4 Mar 30 16:08 vol5
drwxr-xr-x 4 root wheel 512 Mar 30 16:08 vol5.plex

/dev/vinum/vol/concat.plex:
total 2
crwxr-xr-- 1 root wheel 91, 0x10000002 Mar 30 16:08 concat.p0
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 concat.p0.sd
crwxr-xr-- 1 root wheel 91, 0x10010002 Mar 30 16:08 concat.p1
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 concat.p1.sd

/dev/vinum/vol/concat.plex/concat.p0.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000002 Mar 30 16:08 concat.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100002 Mar 30 16:08 concat.p0.s1

/dev/vinum/vol/concat.plex/concat.p1.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20010002 Mar 30 16:08 concat.p1.s0

/dev/vinum/vol/strcon.plex:
total 2
crwxr-xr-- 1 root wheel 91, 0x10000003 Mar 30 16:08 strcon.p0
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 strcon.p0.sd
crwxr-xr-- 1 root wheel 91, 0x10010003 Mar 30 16:08 strcon.p1
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 strcon.p1.sd

/dev/vinum/vol/strcon.plex/strcon.p0.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000003 Mar 30 16:08 strcon.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100003 Mar 30 16:08 strcon.p0.s1

/dev/vinum/vol/strcon.plex/strcon.p1.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20010003 Mar 30 16:08 strcon.p1.s0

FreeBSD 5.0 5 October 1999 5

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

crwxr-xr-- 1 root wheel 91, 0x20110003 Mar 30 16:08 strcon.p1.s1

/dev/vinum/vol/stripe.plex:
total 1
crwxr-xr-- 1 root wheel 91, 0x10000001 Mar 30 16:08 stripe.p0
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 stripe.p0.sd

/dev/vinum/vol/stripe.plex/stripe.p0.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000001 Mar 30 16:08 stripe.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100001 Mar 30 16:08 stripe.p0.s1

/dev/vinum/vol/tinyvol.plex:
total 1
crwxr-xr-- 1 root wheel 91, 0x10000000 Mar 30 16:08 tinyvol.p0
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 tinyvol.p0.sd

/dev/vinum/vol/tinyvol.plex/tinyvol.p0.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000000 Mar 30 16:08 tinyvol.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100000 Mar 30 16:08 tinyvol.p0.s1

/dev/vinum/vol/vol5.plex:
total 2
crwxr-xr-- 1 root wheel 91, 0x10000004 Mar 30 16:08 vol5.p0
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 vol5.p0.sd
crwxr-xr-- 1 root wheel 91, 0x10010004 Mar 30 16:08 vol5.p1
drwxr-xr-x 2 root wheel 512 Mar 30 16:08 vol5.p1.sd

/dev/vinum/vol/vol5.plex/vol5.p0.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20000004 Mar 30 16:08 vol5.p0.s0
crwxr-xr-- 1 root wheel 91, 0x20100004 Mar 30 16:08 vol5.p0.s1

/dev/vinum/vol/vol5.plex/vol5.p1.sd:
total 0
crwxr-xr-- 1 root wheel 91, 0x20010004 Mar 30 16:08 vol5.p1.s0
crwxr-xr-- 1 root wheel 91, 0x20110004 Mar 30 16:08 vol5.p1.s1

In the case of unattached plexes and subdisks, the naming is reversed. Subdisks are named after the disk on
which they are located, and plexes are named after the subdisk. This mapping is still to be
determined.

OBJECT STATES

Each vinum object has a state associated with it. vinum uses this state to determine the handling of the
object.

VOLUME STATES
Volumes may have the following states:

FreeBSD 5.0 5 October 1999 6

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

down The volume is completely inaccessible.

up The volume is up and at least partially functional. Not all plexes may be available.

PLEX STATES
Plexes may have the following states:

referenced A plex entry which has been referenced as part of a volume, but which is currently not
known.

faulty A plex which has gone completely down because of I/O errors.

down A plex which has been taken down by the administrator.

initializing A plex which is being initialized.

The remaining states represent plexes which are at least partially up.

corrupt A plex entry which is at least partially up. Not all subdisks are available, and an inconsis-
tency has occurred. If no other plex is uncorrupted, the volume is no longer consistent.

degraded A RAID-5 plex entry which is accessible, but one subdisk is down, requiring recovery for
many I/O requests.

flaky A plex which is really up, but which has a reborn subdisk which we don’t completely
trust, and which we don’t want to read if we can avoid it.

up A plex entry which is completely up. All subdisks are up.

SUBDISK STATES
Subdisks can have the following states:

empty A subdisk entry which has been created completely. All fields are correct, and the disk
has been updated, but the on the disk is not valid.

referenced A subdisk entry which has been referenced as part of a plex, but which is currently not
known.

initializing A subdisk entry which has been created completely and which is currently being initial-
ized.

The following states represent invalid data.

obsolete A subdisk entry which has been created completely. All fields are correct, the config on
disk has been updated, and the data was valid, but since then the drive has been taken
down, and as a result updates have been missed.

stale A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has been crashed and
updates have been lost.

The following states represent valid, inaccessible data.

FreeBSD 5.0 5 October 1999 7

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

crashed A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has gone down. No attempt
has been made to write to the subdisk since the crash, so the data is valid.

down A subdisk entry which was up, which contained valid data, and which was taken down by
the administrator. The data is valid.

reviving The subdisk is currently in the process of being revived. We can write but not read.

The following states represent accessible subdisks with valid data.

reborn A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data was valid, but since then the drive has gone down and up again.
No updates were lost, but it is possible that the subdisk has been damaged. We won’t read
from this subdisk if we have a choice. If this is the only subdisk which covers this address
space in the plex, we set its state to up under these circumstances, so this status implies
that there is another subdisk to fulfil the request.

up A subdisk entry which has been created completely. All fields are correct, the disk has
been updated, and the data is valid.

DRIVE STATES
Drives can have the following states:

referenced At least one subdisk refers to the drive, but it is not currently accessible to the system. No
device name is known.

down The drive is not accessible.

up The drive is up and running.

BUGS
1. vinum is a new product. Bugs can be expected. The configuration mechanism is not yet fully func-

tional. If you have difficulties, please look at the section DEBUGGING PROBLEMS WITH VINUM
before reporting problems.

2. Kernels with the vinum pseudo-device appear to work, but are not supported. If you have trouble with
this configuration, please first replace the kernel with a non-Vinum kernel and test with the kld module.

3. Detection of differences between the version of the kernel and the kld is not yet implemented.

4. The RAID-5 functionality is new in FreeBSD 3.3. Some problems have been reported with vinum in
combination with soft updates, but these are not reproducible on all systems. If you are planning to use
vinum in a production environment, please test carefully.

DEBUGGING PROBLEMS WITH VINUM
Solving problems with vinum can be a difficult affair. This section suggests some approaches.

Configuration problems

FreeBSD 5.0 5 October 1999 8

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

It is relatively easy (too easy) to run into problems with the vinum configuration. If you do, the first thing
you should do is stop configuration updates:

vinum setdaemon 4

This will stop updates and any further corruption of the on-disk configuration.

Next, look at the on-disk configuration with thevinum dumpconfig command, for example:

vinum dumpconfig

Drive 4: Device /dev/da3h

Created on crash.lemis.com at Sat May 20 16:32:44 2000

Config last updated Sat May 20 16:32:56 2000

Size: 601052160 bytes (573 MB)

volume obj state up

volume src state up

volume raid state down

volume r state down

volume foo state up

plex name obj.p0 state corrupt org concat vol obj

plex name obj.p1 state corrupt org striped 128b vol obj

plex name src.p0 state corrupt org striped 128b vol src

plex name src.p1 state up org concat vol src

plex name raid.p0 state faulty org disorg vol raid

plex name r.p0 state faulty org disorg vol r

plex name foo.p0 state up org concat vol foo

plex name foo.p1 state faulty org concat vol foo

sd name obj.p0.s0 drive drive2 plex obj.p0 state reborn len 409600b driveoffset 265b plexoffset 0b

sd name obj.p0.s1 drive drive4 plex obj.p0 state up len 409600b driveoffset 265b plexoffset 409600b

sd name obj.p1.s0 drive drive1 plex obj.p1 state up len 204800b driveoffset 265b plexoffset 0b

sd name obj.p1.s1 drive drive2 plex obj.p1 state reborn len 204800b driveoffset 409865b plexoffset 128b

sd name obj.p1.s2 drive drive3 plex obj.p1 state up len 204800b driveoffset 265b plexoffset 256b

sd name obj.p1.s3 drive drive4 plex obj.p1 state up len 204800b driveoffset 409865b plexoffset 384b

The configuration on all disks should be the same. If this is not the case, please save the output to a file and report the problem. There is probably little that can be done to recover the on-disk configuration, but if you keep a copy of the files used to create the objects, you

should be able to re-create them. Thecreate command does not change the subdisk data, so this will not cause data corruption. You may need to use theresetconfig command if you have this kind of trouble.

Kernel Panics

In order to analyse a panic which you suspect comes from vinum you will need to build a debug kernel. See the online handbook at

/usr/share/doc/handbook/kerneldebug.html (if installed) or

http://www.FreeBSD.org/handbook/kerneldebug.html for more details of how to do this.

Perform the following steps to analyse avinum problem:

1. Copy the files /usr/src/sys/modules/vinum/.gdbinit.crash,

/usr/src/sys/modules/vinum/.gdbinit.kernel,

/usr/src/sys/modules/vinum/.gdbinit.serial,

/usr/src/sys/modules/vinum/.gdbinit.vinum and

/usr/src/sys/modules/vinum/.gdbinit.vinum.paths to the directory in which you will be performing the analysis, typically

/var/crash.

2. Make sure that you build thevinum module with debugging information. The standardMakefile builds a module with debugging symbols by default. If the version ofvinum in/modules does not

contain symbols, you will not get an error message, but the stack trace will not show the symbols. Check the module before startinggdb:

$ file /modules/vinum.ko

/modules/vinum.ko: ELF 32-bit LSB shared object, Intel 80386,

version 1 (FreeBSD), not stripped

If the output shows that /modules/vinum.ko is stripped, you will have to find a version which is not. Usually this will be either in

/usr/obj/sys/modules/vinum/vinum.ko (if you have built vinum with a make world) or

/usr/src/sys/modules/vinum/vinum.ko (if you have built vinum in this directory). Modify the file

.gdbinit.vinum.paths accordingly.

FreeBSD 5.0 5 October 1999 9

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

3. Either take a dump or use remote serial gdb to analyse the problem. To analyse a dump, say /var/crash/vmcore.5, link

/var/crash/.gdbinit.crash to/var/crash/.gdbinit and enter:

cd /var/crash

gdb -k kernel.debug vmcore.5

This example assumes that you have installed the correct debug kernel at/var/crash/kernel.debug. If not, substitute the correct name of the debug kernel.

To perform remote serial debugging, link/var/crash/.gdbinit.serial to/var/crash/.gdbinit and enter

cd /var/crash

gdb -k kernel.debug

In this case, the.gdbinit file performs the functions necessary to establish connection. The remote machine must already be in debug mode: enter the kernel debugger and selectgdb. The serial.gdbinit file expects

the serial connection to run at 38400 bits per second; if you run at a different speed, edit the file accordingly (look for theremotebaud specification).

The following example shows a remote debugging session using thedebug command ofvinum(8):

GDB 4.16 (i386-unknown-freebsd), Copyright 1996 Free Software Foundation, Inc.

Debugger (msg=0xf1093174 "vinum debug") at ../../i386/i386/db_interface.c:318

318 in_Debugger = 0;

#1 0xf108d9bc in vinumioctl (dev=0x40001900, cmd=0xc008464b, data=0xf6dedee0 "",

flag=0x3, p=0xf68b7940) at

/usr/src/sys/modules/Vinum/../../dev/Vinum/vinumioctl.c:102

102 Debugger ("vinum debug");

(kgdb) bt

#0 Debugger (msg=0xf0f661ac "vinum debug") at ../../i386/i386/db_interface.c:318

#1 0xf0f60a7c in vinumioctl (dev=0x40001900, cmd=0xc008464b, data=0xf6923ed0 "",

flag=0x3, p=0xf688e6c0) at

/usr/src/sys/modules/vinum/../../dev/vinum/vinumioctl.c:109

#2 0xf01833b7 in spec_ioctl (ap=0xf6923e0c) at ../../miscfs/specfs/spec_vnops.c:424

#3 0xf0182cc9 in spec_vnoperate (ap=0xf6923e0c) at ../../miscfs/specfs/spec_vnops.c:129

#4 0xf01eb3c1 in ufs_vnoperatespec (ap=0xf6923e0c) at ../../ufs/ufs/ufs_vnops.c:2312

#5 0xf017dbb1 in vn_ioctl (fp=0xf1007ec0, com=0xc008464b, data=0xf6923ed0 "",

p=0xf688e6c0) at vnode_if.h:395

#6 0xf015dce0 in ioctl (p=0xf688e6c0, uap=0xf6923f84) at ../../kern/sys_generic.c:473

#7 0xf0214c0b in syscall (frame={tf_es = 0x27, tf_ds = 0x27, tf_edi = 0xefbfcff8,

tf_esi = 0x1, tf_ebp = 0xefbfcf90, tf_isp = 0xf6923fd4, tf_ebx = 0x2,

tf_edx = 0x804b614, tf_ecx = 0x8085d10, tf_eax = 0x36, tf_trapno = 0x7,

tf_err = 0x2, tf_eip = 0x8060a34, tf_cs = 0x1f, tf_eflags = 0x286,

tf_esp = 0xefbfcf78, tf_ss = 0x27}) at ../../i386/i386/trap.c:1100

#8 0xf020a1fc in Xint0x80_syscall ()

#9 0x804832d in ?? ()

#10 0x80482ad in ?? ()

#11 0x80480e9 in ?? ()

When entering from the debugger, it’s important that the source of frame 1 (listed by the.gdbinit file at the top of the example) contains the text

Debugger ("vinum debug");

This is an indication that the address specifications are correct. If you get some other output, your symbols and the kernel module are out of sync, and the trace will be meaningless.

For an initial investigation, the most important information is the output of thebt (backtrace) command above.

Reporting problems with Vinum

If you find any bugs invinum, please report them to Greg Lehey <grog@lemis.com>. Supply the following information:

• The output of thevinum list command.

• Any messages printed in/var/log/messages. All such messages will be identified by the textvinum at the beginning.

• If you have a panic, a stack trace as described above.

FreeBSD 5.0 5 October 1999 10

vinum (4) FreeBSD Kernel Interfaces Manual vinum (4)

AUTHOR
Greg Lehey 〈grog@lemis.com〉.

HISTORY
vinum first appeared in FreeBSD 3.0. The RAID-5 component ofvinum was dev eloped by Cybernet Inc.www.cybernet.com for its NetMAX product.

SEE ALSO
vinum(8),disklabel(5),disklabel(8),newfs(8)

FreeBSD 5.0 5 October 1999 11

