
The FreeBSD SMPng implementation

FreeBSD SMPng 1 Greg Lehey, 29 June 2001

Greg Lehey
grog@FreeBSD.org
grog@au1.ibm.com
Boston, 29 June 2001

Topics

FreeBSD SMPng 2 Greg Lehey, 29 June 2001

• How we got into this mess.

• Threaded interrupt handlers.

• Kinds of locks.

• Debugging.

The UNIX kernel design

FreeBSD SMPng 3 Greg Lehey, 29 June 2001

• One CPU

• Processes perform user functions.

• Interrupt handlers handle I/O.

• Interrupt handlers have priority over processes.

Processes

FreeBSD SMPng 4 Greg Lehey, 29 June 2001

• One CPU

• Processes have different priorities.

• The scheduler chooses the highest priority process which is
ready to run.

• The process can relinquish the CPU voluntarily (tsleep).

• The scheduler runs when the process finishes its time slice.

• Processes are not scheduled while running kernel code.

Interrupts

FreeBSD SMPng 5 Greg Lehey, 29 June 2001

• Interrupts cannot be delayed until kernel is inactive.

• Different synchronization: block interrupts in critical kernel
code.

• Finer grained locking: splbio for block I/O, spltty for
serial I/O, splnet for network devices, etc.

FreeBSD SMPng 6 Greg Lehey, 29 June 2001

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Ideal single processor scheduling



Problems with this approach

FreeBSD SMPng 7 Greg Lehey, 29 June 2001

Kernel synchronization is inadequate. UNIX can’t guarantee
consistency if multiple processes can run in kernel mode at the
same time.

Solution: Ensure that a process leaves kernel mode before
preempting it. Since processes do not execute kernel code for
very long, this causes only minimal problems.

Danger: If a process does stay in the kernel for an extended
period of time, it can cause significant performance
degradation or even hangs.

FreeBSD SMPng 8 Greg Lehey, 29 June 2001

Interrupt handler
Running

Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
splbio

Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted P2 runs

Real single processor scheduling

FreeBSD SMPng 9 Greg Lehey, 29 June 2001

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Ideal single processor scheduling

FreeBSD SMPng 10 Greg Lehey, 29 June 2001

Interrupt handler
Active

Idle

High priority process (CPU 0)
Kernel

User

SRUN

SSLEEP

Low priority process (CPU 1)
Kernel

User

SRUN

SSLEEP

P1 woken

Ideal dual processor scheduling

Problems with ideal view

FreeBSD SMPng 11 Greg Lehey, 29 June 2001

• Can’t hav e more than one process running in kernel mode.

• ‘‘Solution’’: introduce Big Kernel Lock. Spin (loop) waiting
for this lock if it’s taken.

• Disadvantage: much CPU time may be lost.

FreeBSD SMPng 12 Greg Lehey, 29 June 2001

Interrupt handler
Active

Idle

High priority process (CPU 0)
Kernel

User

SPIN

SRUN

SSLEEP

Low priority process (CPU 1)
Kernel

User

SPIN

SRUN

SSLEEP

P1 woken

Real dual processor scheduling



FreeBSD SMPng 13 Greg Lehey, 29 June 2001

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Extreme quad processor scheduling: ideal

FreeBSD SMPng 14 Greg Lehey, 29 June 2001

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Extreme quad processor scheduling: real

Limiting the delays

FreeBSD SMPng 15 Greg Lehey, 29 June 2001

• Create ‘‘fine-grained’’ locking: lock only small parts of the
kernel.

• If resource is not available, block, don’t spin.

• Problem: interrupt handlers can’t block.

• Solution: let them block, then.

Blocking interrupt handlers

FreeBSD SMPng 16 Greg Lehey, 29 June 2001

• Interrupt handlers get a process context.

• Short term: normal processes, involve scheduler overhead on
ev ery invocation.

• Longer term: ‘‘light weight interrupt threads’’, scheduled
only when conflicts occur.

• Choice dictated by stability requirements during changeover.

• Resurrect the idle process, which gives a process context to
each interrupt process.

Blocking interrupt handlers

FreeBSD SMPng 17 Greg Lehey, 29 June 2001

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 10 98.1 0.0 0 0 ?? RWL 2:54PM 4:41.65 (idle: cpu1)
root 11 98.1 0.0 0 0 ?? RWL 2:54PM 4:41.73 (idle: cpu0)
root 13 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.63 (swi6: tty:sio+)
root 14 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (swi4: vm)
root 15 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (swi5: task queue)
root 16 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (swi2: camnet)
root 17 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.01 (swi3: cambio)
root 18 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.03 (irq14: ata0)
root 19 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq15: ata1)
root 20 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.01 (irq3: dc0)
root 21 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.01 (irq10: ahc0)
root 22 0.0 0.0 0 0 ?? WWL 2:54PM 0:03.13 (irq11: atapci1+)
root 23 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq1: atkbd0)
root 24 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (swi0: tty:sio)
root 25 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq4: sio0)
root 26 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq7: ppc0)
root 27 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq0: clk)
root 28 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.00 (irq8: rtc)
root 12 0.0 0.0 0 0 ?? WWL 2:54PM 0:00.02 (swi1: net)

Types of locking constructs

FreeBSD SMPng 18 Greg Lehey, 29 June 2001

• Semaphores.

• Spin locks.

• Adaptive locks.

• Blocking locks.

• Condition variables.

• Read-write locks.

Locking constructs are also called mutexes .



Semaphores

FreeBSD SMPng 19 Greg Lehey, 29 June 2001

• Oldest synchronization primitive.

• Include a count variable which defines how many processes
may access the resource in parallel.

• No concept of ownership.

• The process that releases a semaphore may not be the
process which last acquired it.

• Waiting is done by blocking (scheduling).

• Traditionally used for synchronization between processes.

Spin locks

FreeBSD SMPng 20 Greg Lehey, 29 June 2001

• Controls a single resource: only one process may own it.

• ‘‘busy wait’’ when lock is not available.

• May be of use where the delay is short (less than the
overhead to run the scheduler).

• Can be very wasteful for longer delays.

• The only primitive that can be used if there is no process
context (traditional interrupt handlers).

• May have an owner, which is useful for consistency
checking and debugging.

Blocking lock

FreeBSD SMPng 21 Greg Lehey, 29 June 2001

• Controls a single resource: only one process may own it.

• Runs the scheduler when lock is not available.

• Generally usable where process context is available.

• May be less efficient than spin locks where the delay is short
(less than the overhead to run the scheduler).

• Can only be used if there is a process context.

• May have an owner, which is useful for consistency
checking and debugging.

Adaptive lock

FreeBSD SMPng 22 Greg Lehey, 29 June 2001

• Combination of spin lock and blocking lock.

• When lock is not available, spin for a period of time, then
block if still not available.

• Can only be used if there is a process context.

• May have an owner, which is useful for consistency
checking and debugging.

Condition variable

FreeBSD SMPng 23 Greg Lehey, 29 June 2001

• Tests an external condition, blocks if it is not met.

• When the condition is met, all processes sleeping on the wait
queue are woken.

• Similar to tsleep /wakeup synchronization.

Read-write lock

FreeBSD SMPng 24 Greg Lehey, 29 June 2001

• Allows multiple readers or alternatively one writer.



Comparing locks

FreeBSD SMPng 25 Greg Lehey, 29 June 2001

Lock Multiple owner requires
type resources context

Semaphore yes no yes
Spin lock no yes no
Blocking lock no yes yes
Adaptive lock no yes yes
Condition variable yes no yes
Read-write lock yes no yes

Recursion

FreeBSD SMPng 26 Greg Lehey, 29 June 2001

• What do we do if a process tries to take a mutex it already
has?

• Could be indicative of poor code structure.

• In the short term, it’s very likely.

• Solaris does not allow recursion, and this has caused many
problems.

• Currently FreeBSD allows recursion. Discussion is still
intense.

FreeBSD locks

FreeBSD SMPng 27 Greg Lehey, 29 June 2001

struct lock_object {
struct lock_class *lo_class;
const char *lo_name;
const char *lo_file; /* File and line of last acquire. */
int lo_line;
u_int lo_flags;
STAILQ_ENTRY(lock_object) lo_list; /* List of all locks in system. */
struct witness *lo_witness;

};

#define LO_INITIALIZED 0x00010000 /* Lock has been initialized. */
#define LO_WITNESS 0x00020000 /* witness this lock. */
#define LO_QUIET 0x00040000 /* Don’t log locking operations. */
#define LO_RECURSABLE 0x00080000 /* Lock may recurse. */
#define LO_SLEEPABLE 0x00100000 /* Lock may be held when sleeping */
#define LO_LOCKED 0x01000000 /* Someone holds this lock. */
#define LO_RECURSED 0x02000000 /* Someone has recursed this lock */

FreeBSD mutex

FreeBSD SMPng 28 Greg Lehey, 29 June 2001

struct mtx {
struct lock_object mtx_object; /* Common lock properties. */
volatile uintptr_t mtx_lock; /* owner (and state for sleep locks) */
volatile u_int mtx_recurse; /* number of recursive holds */
critical_t mtx_savecrit; /* saved flags (for spin locks) */
TAILQ_HEAD(, proc) mtx_blocked; /* threads blocked on this lock */
LIST_ENTRY(mtx) mtx_contested;/* list of all contested locks */

};

#define MTX_DEF 0x00000000 /* DEFAULT (sleep) lock */
#define MTX_SPIN 0x00000001 /* Spin lock (disables interrupts) */
#define MTX_RECURSE 0x00000004 /* Option: lock allowed to recurse */
#define MTX_NOWITNESS 0x00000008 /* Don’t do any witness checking. */
#define MTX_SLEEPABLE 0x00000010 /* We can sleep with this lock. */

Condition variables

FreeBSD SMPng 29 Greg Lehey, 29 June 2001

struct cv {
struct cv_waitq cv_waitq; /* Queue of condition waiters. */
struct mtx *cv_mtx; /*

* Mutex passed in by cv_*wait*(),
* currently only used for CV_DEBUG.
*/

const char *cv_description;
};

Condition variables

FreeBSD SMPng 30 Greg Lehey, 29 June 2001

• Acquire a condition variable with cv_wait(),
cv_wait_sig(), cv_timedwait() or
cv_timedwait_sig().

• Before acquiring the condition variable, the associated
mutex must be held. The mutex will be released before
sleeping and reacquired on wakeup.

• Unblock one waiter with cv_signal().

• Unblock all waiters with cv_broadcast().

• Wait for queue empty with cv_waitq_empty.

• Same functionality available from the msleep function.



msleep

FreeBSD SMPng 31 Greg Lehey, 29 June 2001

• A version of tsleep which takes a mutex parameter.

• The mutex will be released before sleeping and reacquired
on wakeup.

• Similar to the behaviour of tsleep with splx functions in
traditional UNIX.

• tsleep reimplemented as a macro calling msleep with
null mutex.

• Functionality equivalent to condition variables, which should
be used for new code.

Shared/exclusive locks

FreeBSD SMPng 32 Greg Lehey, 29 June 2001

Another name for reader/writer locks.

struct sx {
struct lock_object sx_object; /* Common lock properties. */
struct mtx sx_lock; /* General protection lock. */
int sx_cnt; /* -1: xlock, > 0: slock count. */
struct cv sx_shrd_cv; /* slock waiters. */
int sx_shrd_wcnt; /* Number of slock waiters. */
struct cv sx_excl_cv; /* xlock waiters. */
int sx_excl_wcnt; /* Number of xlock waiters. */
struct proc *sx_xholder; /* Thread presently holding xlock. */

};

Shared/exclusive locks

FreeBSD SMPng 33 Greg Lehey, 29 June 2001

• More expensive than mutexes, should only be used where
very few write (exclusive) accesses occur.

• All functions require a pointer to a user-allocated struct
sx.

• Create an sx lock with sx_init().

• Attain a read (shared) lock with sx_slock() and release it
with sx_sunlock().

• Attain a write (exclusive) lock with sx_xlock() and
release it with sx_xunlock().

• Destroy an sx lock with sx_destroy.

Original locks

FreeBSD SMPng 34 Greg Lehey, 29 June 2001

• Giant: protects the kernel.

• sched_lock: protects the scheduler.

Current situation

FreeBSD SMPng 35 Greg Lehey, 29 June 2001

• Giant still protects most of the kernel, but is being
weakened.

• softclock and signal handling are now MP-safe and do
not require Giant.

• Individual components protected by leaf node mutexes.

• Many device drivers now converted.

• Choice of construct often left to individual developer.

• Few mid-range locking constructs.

Debugging

FreeBSD SMPng 36 Greg Lehey, 29 June 2001

• Based on BSD/OS work.

• ktr maintains a kernel trace buffer.

• witness code debugs mutex use.



ktr

FreeBSD SMPng 37 Greg Lehey, 29 June 2001

• Traces programmer-specified events.

• Multiple classes, e.g.

#define KTR_GEN 0x00000001 /* General (TR) */
#define KTR_NET 0x00000002 /* Network */
#define KTR_DEV 0x00000004 /* Device driver */
#define KTR_LOCK 0x00000008 /* MP locking */
#define KTR_SMP 0x00000010 /* MP general */
#define KTR_FS 0x00000020 /* Filesystem */

• Code only generated if class bit is set in kernel option
KTR_COMPILE.

• Code only executed if class bit is set in variable ktr_mask,
initially set from kernel option KTR_MASK.

ktr (continued)

FreeBSD SMPng 38 Greg Lehey, 29 June 2001

• Stores trace information in fixed-size entries in a circular
buffer.

• Low overhead trace stores pointers to format strings and
decodes them via tdump(8).

• tdump(8) has not yet been ported to FreeBSD.

• High-overhead trace enabled with kernel option
KTR_EXTEND.

• Trace entries include complete formatted data.

• Suitable for use during intensive debug.

• Orders of magnitude slower than default ‘‘low-overhead’’
trace.

ktr (continued)

FreeBSD SMPng 39 Greg Lehey, 29 June 2001

Sample call (i386/isa/ithread.c ):

void
sched_ithd(void *cookie)
...

CTR3(KTR_INTR, "sched_ithd pid %d(%s) need=%d",
ir->it_proc->p_pid, ir->it_proc->p_comm, ir->it_need);

...
CTR1(KTR_INTR, "sched_ithd: setrunqueue %d",

ir->it_proc->p_pid);
...
void
ithd_loop(void *dummy)

...
CTR3(KTR_INTR, "ithd_loop pid %d(%s) need=%d",

me->it_proc->p_pid, me->it_proc->p_comm, me->it_need);
...

Sample ktr output

FreeBSD SMPng 40 Greg Lehey, 29 June 2001

138 0:034559493 cpu0 machine/mutex.h.510
REL sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:813 r=0

137 0:034508805 cpu0 machine/mutex.h.471
GOT sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:785 r=0

136 0:032610555 cpu0 machine/mutex.h.471
GOT Giant [0xfffffc00006664a0] at ../../kern/kern_synch.c:958 r=0

135 0:032560177 cpu0 machine/mutex.h.510
REL Giant [0xfffffc00006664a0] at ../../alpha/alpha/interrupt.c:123 r=0

134 0:032509499 cpu0 machine/mutex.h.471
GOT Giant [0xfffffc00006664a0] at ../../alpha/alpha/interrupt.c:121 r=0

133 0:032504810 cpu0 ../../alpha/alpha/interrupt.c.115
clock interrupt

132 0:032450423 cpu0 machine/mutex.h.510
REL sched lock [0xfffffc00006662d0] at ../../kern/kern_synch.c:956 r=1

Debugger extensions

FreeBSD SMPng 41 Greg Lehey, 29 June 2001

• FreeBSD has a different kernel debugger from BSD/OS, no
import of functionality.

• Macros for gdb : Display ktr information.

The way ahead

FreeBSD SMPng 42 Greg Lehey, 29 June 2001

• Gradually weaken Giant.

• Convert interrupt handlers to use mutexes.

• Maintain discipline: we can expect chaos as Giant loses its
strength.

• Particular challenge for an ‘‘Open Source’’ project.


