
The FreeBSD SMP implementation

The FreeBSD SMP implementation 1 Greg Lehey, 30 October 2003

Greg ‘‘groggy’’ Lehey
The FreeBSD Project
grog@lemis.com

Singapore, 30 October 2003

Topics

The FreeBSD SMP implementation 2 Greg Lehey, 30 October 2003

• How we got into this mess.

• Why the UNIX kernel is not suited to multiple processors.

• Solving the problem.

• Team dynamics.

• Current state of play.

Free OS performance

The FreeBSD SMP implementation 3 Greg Lehey, 30 October 2003

• Common knowledge: UNIX is faster than Microsoft.

• Example: ftp server recommendations, 1999.

• Microsoft: Three systems, each four processors, 512 MB
memory.

• Only one system ran, the other were backups.

• Throughput: 6 GB/day.

• FreeBSD: wcarchive.cdrom.com had only one
CPU.

• No failover needed.

• Throughput: 700 GB/day.

The Mindcraft benchmarks

The FreeBSD SMP implementation 4 Greg Lehey, 30 October 2003

• In 1999, Mindcraft published benchmarks showing NT
much faster than Linux.

• Linux people first claimed the results were wrong.

• Linux people later realised the results were correct, but the
benchmark was contrived.

• FreeBSD people kept very quiet.

• One of the problems was the ‘‘big kernel
lock’’ SMP implementation.

The UNIX kernel design

The FreeBSD SMP implementation 5 Greg Lehey, 30 October 2003

• One CPU

• Processes perform user functions.

• Interrupt handlers handle I/O.

• Interrupt handlers have priority over processes.

Processes

The FreeBSD SMP implementation 6 Greg Lehey, 30 October 2003

• One CPU

• Processes have different priorities.

• The scheduler chooses the highest priority process which is
ready to run.

• The process can relinquish the CPU voluntarily (tsleep).

• The scheduler runs when the process finishes its time slice.

• Processes are not scheduled while running
kernel code.

Interrupts

The FreeBSD SMP implementation 7 Greg Lehey, 30 October 2003

• Interrupts cannot be delayed until kernel is inactive.

• Different synchronization: block interrupts in critical kernel
code.

• Finer grained locking: splbio for block I/O, spltty for
serial I/O, splnet for network devices, etc.

Ideal single processor scheduling

The FreeBSD SMP implementation 8 Greg Lehey, 30 October 2003

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Problems with this approach

The FreeBSD SMP implementation 9 Greg Lehey, 30 October 2003

Kernel synchronization is inadequate. UNIX can’t guarantee
consistency if multiple processes can run in kernel mode at the
same time.

Solution: Ensure that a process leaves kernel mode before
preempting it. Since processes do not execute kernel code for
very long, this causes only minimal problems.

Danger: If a process does stay in the kernel for
an extended period of time, it can cause
significant performance degradation or even
hangs.

Real single processor scheduling

The FreeBSD SMP implementation 10 Greg Lehey, 30 October 2003

Interrupt handler
Running

Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
splbio

Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs
P2 preempted P2 runs

Ideal single processor scheduling

The FreeBSD SMP implementation 11 Greg Lehey, 30 October 2003

Interrupt handler
Active

Idle

High priority process
Kernel

User

SRUN

SSLEEP

Low priority process
Kernel

User

SRUN

SSLEEP

P1 woken

P2 runs

P2 preempted
P2 runs

Problems on SMP machines

The FreeBSD SMP implementation 12 Greg Lehey, 30 October 2003

• UNIX approach doesn’t allow more than one process
running in kernel mode.

• ‘‘Solution’’: introduce Big Kernel Lock. Spin (loop) waiting
for this lock if it’s taken.

• Disadvantage: much CPU time may be lost.

Real dual processor scheduling

The FreeBSD SMP implementation 13 Greg Lehey, 30 October 2003

Interrupt handler
Active

Idle

High priority process (CPU 0)
Kernel

User

SPIN

SRUN

SSLEEP

Low priority process (CPU 1)
Kernel

User

SPIN

SRUN

SSLEEP

P1 woken

Quad processor scheduling: ideal

The FreeBSD SMP implementation 14 Greg Lehey, 30 October 2003

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Quad processor scheduling: real

The FreeBSD SMP implementation 15 Greg Lehey, 30 October 2003

Process in CPU 0
Kernel

User

SPIN

Process in CPU 1
Kernel

User

SPIN

Process in CPU 2
Kernel

User

SPIN

Process in CPU 3
Kernel

User

SPIN

Getting out of the mess

The FreeBSD SMP implementation 16 Greg Lehey, 30 October 2003

• Linux people started working very quickly.

• FreeBSD people stunned, unable to move.

• FreeBSD people looked at the Linux solution and didn’t
underˆHˆHˆHˆHˆHlike it.

• BSDi bought out Walnut Creek CDROM.

The BSD/OS merge

The FreeBSD SMP implementation 17 Greg Lehey, 30 October 2003

• BSDi (previously BSDI) was the vendor of BSD/OS.

• Initial plans were to merge BSD/OS and FreeBSD.

• Licensing and technical issues stopped this merge.

• BSD/OS already had better SMP support under
development, code name ‘‘SMPng’’.

• FreeBSD developers were given access to BSD/OS source
code.

• FreeBSD developers allowed to merge
‘‘significant parts’’ of BSD/OS code.

• Decision made to merge SMPng.

The meeting at Yahoo!

The FreeBSD SMP implementation 18 Greg Lehey, 30 October 2003

• Interested developers met at Yahoo! in June 2000.

• Total of 20 participants.

• 11 FreeBSD developers.

• 3 Apple developers.

• 3 Yahoo! staff.

• 2 BSDi developers.

Limiting the delays

The FreeBSD SMP implementation 19 Greg Lehey, 30 October 2003

• Create ‘‘fine-grained’’ locking: lock only small parts of the
kernel.

• If resource is not available, block, don’t spin.

• Problem: interrupt handlers can’t block.

• Solution: let them block, then.

Blocking interrupt handlers

The FreeBSD SMP implementation 20 Greg Lehey, 30 October 2003

• Interrupt handlers get a process context.

• Short term: normal processes, involve scheduler overhead on
ev ery invocation.

• Longer term: ‘‘light weight interrupt threads’’, scheduled on-
ly when conflicts occur.

• Choice dictated by stability requirements during changeover.

• Resurrect the idle process, which gives a pro-
cess context to each interrupt process.

Blocking interrupt handlers

The FreeBSD SMP implementation 21 Greg Lehey, 30 October 2003

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND
root 11 99.0 0.0 0 12 ?? RL 2:11PM 150:09.29 (idle: cpu1)
root 12 99.0 0.0 0 12 ?? RL 2:11PM 150:08.71 (idle: cpu0)
root 1 0.0 0.3 756 384 ?? ILs 2:11PM 0:00.11 /sbin/init --
root 13 0.0 0.0 0 12 ?? WL 2:11PM 0:30.61 (swi8: tty:sio clock)
root 15 0.0 0.0 0 12 ?? WL 2:11PM 0:01.32 (swi1: net)
root 2 0.0 0.0 0 12 ?? DL 2:11PM 0:02.35 (g_event)
root 3 0.0 0.0 0 12 ?? DL 2:11PM 0:01.53 (g_up)
root 4 0.0 0.0 0 12 ?? DL 2:11PM 0:01.63 (g_down)
root 16 0.0 0.0 0 12 ?? DL 2:11PM 0:01.05 (random)
root 17 0.0 0.0 0 12 ?? WL 2:11PM 0:00.16 (swi7: task queue)
root 18 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (swi6:+)
root 5 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (taskqueue)
root 21 0.0 0.0 0 12 ?? WL 2:11PM 0:00.01 (swi3: cambio)
root 22 0.0 0.0 0 12 ?? WL 2:11PM 0:00.08 (irq14: ata0)
root 24 0.0 0.0 0 12 ?? WL 2:11PM 0:02.38 (irq2: rl0 uhci0)
root 25 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (usb0)
root 26 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (usbtask)
root 27 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq5: fwohci0++)
root 28 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq10: sym0)
root 29 0.0 0.0 0 12 ?? WL 2:11PM 0:00.01 (irq11: sym1)
root 30 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq1: atkbd0)
root 31 0.0 0.0 0 12 ?? WL 2:11PM 0:00.00 (irq6: fdc0)
root 6 0.0 0.0 0 12 ?? DL 2:11PM 0:00.04 (pagedaemon)
root 7 0.0 0.0 0 12 ?? DL 2:11PM 0:00.00 (vmdaemon)
root 39 0.0 0.0 0 12 ?? DL 2:11PM 0:01.00 (syncer)

Types of locking constructs

The FreeBSD SMP implementation 22 Greg Lehey, 30 October 2003

• Semaphores.

• Spin locks.

• Adaptive locks.

• Blocking locks.

• Condition variables.

• Read-write locks.

• Locking constructs are also called mutexes.

Semaphores

The FreeBSD SMP implementation 23 Greg Lehey, 30 October 2003

• Oldest synchronization primitive.

• Include a count variable which defines how many processes
may access the resource in parallel.

• No concept of ownership.

• The process that releases a semaphore may not be the pro-
cess which last acquired it.

• Waiting is done by blocking (scheduling).

• Traditionally used for synchronization be-
tween processes.

Spin locks

The FreeBSD SMP implementation 24 Greg Lehey, 30 October 2003

• Controls a single resource: only one process may own it.

• ‘‘Busy wait’’ when lock is not available.

• May be of use where the delay is short (less than the over-
head to run the scheduler).

• Can be very wasteful for longer delays.

• The only primitive that can be used if there is no process
context (traditional interrupt handlers).

• May have an owner, which is useful for con-
sistency checking and debugging.

Blocking lock

The FreeBSD SMP implementation 25 Greg Lehey, 30 October 2003

• Controls a single resource: only one process may own it.

• Runs the scheduler when lock is not available.

• Generally usable where process context is available.

• May be less efficient than spin locks where the delay is short
(less than the overhead to run the scheduler).

• Can only be used if there is a process context.

• May have an owner, which is useful for con-
sistency checking and debugging.

Adaptive lock

The FreeBSD SMP implementation 26 Greg Lehey, 30 October 2003

• Combination of spin lock and blocking lock.

• When lock is not available, spin for a period of time, then
block if still not available.

• Can only be used if there is a process context.

• May have an owner, which is useful for consistency check-
ing and debugging.

Condition variable

The FreeBSD SMP implementation 27 Greg Lehey, 30 October 2003

• Tests an external condition, blocks if it is not met.

• When the condition is met, all processes sleeping on the wait
queue are woken.

• Similar to tsleep /wakeup synchronization.

Read-write lock

The FreeBSD SMP implementation 28 Greg Lehey, 30 October 2003

• Special case of a blocking lock.

• Allows multiple readers or alternatively one writer.

Comparing locks

The FreeBSD SMP implementation 29 Greg Lehey, 30 October 2003

Lock Multiple owner requires
type resources context

Semaphore yes no yes
Spin lock no yes no
Blocking lock no yes yes
Adaptive lock no yes yes
Condition variable yes no yes
Read-write lock yes no yes

Recursion

The FreeBSD SMP implementation 30 Greg Lehey, 30 October 2003

• What do we do if a process tries to take a mutex it already
has?

• Could be indicative of poor code structure.

• In the short term, it’s very likely.

• Solaris does not allow recursion, and this has caused many
problems.

• Currently FreeBSD allows recursion.

• Discussion continues.

Condition variables

The FreeBSD SMP implementation 31 Greg Lehey, 30 October 2003

• Acquire a condition variable with cv_wait(),
cv_wait_sig(), cv_timedwait() or cv_timed-
wait_sig().

• Before acquiring the condition variable, the associated mu-
tex must be held. The mutex will be released before sleep-
ing and reacquired on wakeup.

• Unblock one waiter with cv_signal().

• Unblock all waiters with cv_broadcast().

• Wait for queue empty with cv_waitq_empty.

• Same functionality available from the msleep function.

msleep

The FreeBSD SMP implementation 32 Greg Lehey, 30 October 2003

• A version of tsleep which takes a mutex parameter.

• The mutex will be released before sleeping and reacquired
on wakeup.

• Similar to the behaviour of tsleep with splx functions in
traditional UNIX.

• tsleep reimplemented as a macro calling msleep with
null mutex.

• Functionality equivalent to condition vari-
ables, which should be used for new code.

Shared/exclusive locks

The FreeBSD SMP implementation 33 Greg Lehey, 30 October 2003

• Really read/write locks.

• More expensive than mutexes, should only be used where
very few write (exclusive) accesses occur.

• Create an sx lock with sx_init().

• Attain a read (shared) lock with sx_slock() and release it
with sx_sunlock().

• Attain a write (exclusive) lock with
sx_xlock() and release it with sx_xun-
lock().

• Destroy an sx lock with sx_destroy.

Project planning: after Yahoo!

The FreeBSD SMP implementation 34 Greg Lehey, 30 October 2003

• Aim for stability, not performance, during the development.

• Port BSDi code, don’t reinvent the wheel.

• Use heavy-weight threads at first to enable better debugging.

Responsibilities

The FreeBSD SMP implementation 35 Greg Lehey, 30 October 2003

• Matt Dillon to port locking primitives and schedlock.

• Greg Lehey to port interrupt threads.

• Doug Rabson to handle Alpha issues.

• Paul Saab to enhance ddb.

• Jonathan Lemon to convert network drivers.

• Chuck Paterson of BSDi to be project liaison.

• Jason Evans to be project manager.

• (But we never had a project manager before).

First steps

The FreeBSD SMP implementation 36 Greg Lehey, 30 October 2003

• Matt Dillon had a tight deadline.

• Porting the BSD/OS code was more difficult than anticipat-
ed.

• Matt rewrote the code.

• Code later ported by Jake Burkholder.

First steps (2)

The FreeBSD SMP implementation 37 Greg Lehey, 30 October 2003

• Greg Lehey started porting interrupt threads.

• Greg had two weeks to port the code.

• Porting the BSD/OS code was more difficult than anticipat-
ed.

• Heavyweight threads only in SPARC code.

• SPARC and Intel code very different.

First steps (3)

The FreeBSD SMP implementation 38 Greg Lehey, 30 October 2003

• Differences between FreeBSD and BSD/OS larger than an-
ticipated.

• Four-way comparison: FreeBSD 4.0, BSD/OS 4.0, BSD/OS
5 Intel, BSD/OS 5 SPARC.

• Took two months.

Initial commit

The FreeBSD SMP implementation 39 Greg Lehey, 30 October 2003

From: Jason Evans <jasone@FreeBSD.org>
To: cvs-committers@FreeBSD.org, cvs-all@FreeBSD.org
Subject: cvs commit: src/bin/ps print.c src/share/man/man9 mutex.9 Makefile

src/usr.bin/top machine.c src/sys/alpha/alpha mp_machdep.c
synch_machdep.c clock.c genassym.c interrupt.c ipl_funcs.c
locore.s machdep.c mem.c pmap.c prom.c support.s swtch.s trap.c ...

jasone 2000/09/06 18:33:03 PDT

(file names omitted)
Log:
Major update to the way synchronization is done in the kernel. Highlights
include:

* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)

* Per-CPU idle processes.

* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).

Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh

Original locks

The FreeBSD SMP implementation 40 Greg Lehey, 30 October 2003

• Giant: protects the kernel.

• sched_lock: protects the scheduler.

Current situation

The FreeBSD SMP implementation 41 Greg Lehey, 30 October 2003

• Giant still protects most of the kernel, but is being weak-
ened.

• softclock and signal handling are now MP-safe and do
not require Giant.

• Individual components protected by leaf node mutexes.

• Many device drivers now converted.

• Choice of construct often left to individual
developer.

• Few mid-range locking constructs.

Opening the flood gates

The FreeBSD SMP implementation 42 Greg Lehey, 30 October 2003

• After this point, many people got involved.

• Much cosmetic work.

• Terminology problems: what is a ‘‘mutex’’?

• No clear direction: Many contributors decided on their own
locking constructs.

• Loss of Jason Evans as project leader in March 2001.

• No replacement project leader.

The kernel summit

The FreeBSD SMP implementation 43 Greg Lehey, 30 October 2003

• ‘‘Kernel summit’’ held at Boston USENIX conference on
Saturday, 30 June 2001.

• Many interruptions.

• Conclusion: release FreeBSD 5.0 in November 2001, ready
or not.

• FreeBSD 5.0 was finally released in December 2002.

Project communications

The FreeBSD SMP implementation 44 Greg Lehey, 30 October 2003

• Mailing list smp@FreeBSD.org, very little traffic.

• Much traffic on IRC channel.

• IRC tended to limit the number of participants.

• No record of discussions.

Debugging tools

The FreeBSD SMP implementation 45 Greg Lehey, 30 October 2003

• BSD/OS supplied debugging tools.

• Not all BSD/OS tools have been ported.

• Few new tools have been written: debugging is not interest-
ing enough.

• Good task for ‘‘Junior Kernel Hacker’’.

Documentation

The FreeBSD SMP implementation 46 Greg Lehey, 30 October 2003

• Change logs very well documented.

• Individual functions well documented.

• Overall project plan less clear.

Sample commit log

The FreeBSD SMP implementation 47 Greg Lehey, 30 October 2003

jhb 2001/09/10 14:04:49 PDT

Modified files:
sys/kern kern_shutdown.c

Log:
- Axe holding_giant as it is not used now anyways and was ok’d by
dillon in an earlier e-mail.

- We don’t need to test the console right before we vfprintf() the
panicstr message. The printing of the panic message is a fine
console test by itself and doesn’t make useful messages scroll
off the screen or tick developers off in quite the same.

Requested by: jlemon, imp, bmilekic, chris, gsutter, jake (2)

Revision Changes Path
1.110 +5 -36 src/sys/kern/kern_shutdown.c

Other commit logs

The FreeBSD SMP implementation 48 Greg Lehey, 30 October 2003

From: John Baldwin <jhb@FreeBSD.org>
Date: Tue, 21 Nov 2000 13:10:15 -0800 (PST)

jhb 2000/11/21 13:10:15 PST

Modified files:
sys/kern kern_ktr.c

Log:
Ahem, fix the disclaimer portion of the copyright so it disclaim’s the
voices in my head. You can sue the voices in Bill Paul’s head all you
want.

Noticed by: jhb

Revision Changes Path
1.6 +3 -3 src/sys/kern/kern_ktr.c

Other commit logs

The FreeBSD SMP implementation 49 Greg Lehey, 30 October 2003

--- kern_ktr.c 2000/11/15 21:51:53 1.5
+++ kern_ktr.c 2000/11/21 21:10:15 1.6
@@ -14,10 +14,10 @@
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*

- * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ‘‘AS IS’’ AND
+ * THIS SOFTWARE IS PROVIDED BY JOHN BALDWIN AND CONTRIBUTORS ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

- * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
+ * ARE DISCLAIMED. IN NO EVENT SHALL JOHN BALDWIN OR THE VOICES IN HIS HEAD

* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

@@ -26,7 +26,7 @@
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*

- * $FreeBSD: src/sys/kern/kern_ktr.c,v 1.5 2000/11/15 21:51:53 jhb Exp $
+ * $FreeBSD: src/sys/kern/kern_ktr.c,v 1.6 2000/11/21 21:10:15 jhb Exp $
*/

/*

Other commit logs

The FreeBSD SMP implementation 50 Greg Lehey, 30 October 2003

From: John Baldwin <jhb@FreeBSD.org>

On 21-Nov-00 John Baldwin wrote:
> jhb 2000/11/21 13:10:15 PST
>
> Modified files:
> sys/kern kern_ktr.c
> Log:
> Ahem, fix the disclaimer portion of the copyright so it disclaim’s the
> voices in my head. You can sue the voices in Bill Paul’s head all you
> want.
>
> Noticed by: jhb

Oh geez. That should be ’Noticed by: jlemon’. I guess the voices
are getting a bit too rambunctious.

Other commit logs

The FreeBSD SMP implementation 51 Greg Lehey, 30 October 2003

From: Warner Losh <imp@village.org>

In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices
: are getting a bit too rambunctious.

It could be worse. You could be talking about yourself in the third
person. Warner hates it when he does that.

Other commit logs

The FreeBSD SMP implementation 52 Greg Lehey, 30 October 2003

From: John Baldwin <jhb@FreeBSD.ORG>

On 21-Nov-00 Warner Losh wrote:
> In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
>: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices are
>: getting
>: a bit too rambunctious.
>
> It could be worse. You could be talking about yourself in the third
> person. Warner hates it when he does that.

Well, I’m sure Warner will have a private discussion with Warner about
doing that in public.

I wonder how the voices do their locking...

Other commit logs

The FreeBSD SMP implementation 53 Greg Lehey, 30 October 2003

From: Warner Losh <imp@village.org>

In message <XFMail.001121133952.jhb@FreeBSD.org> John Baldwin writes:
: On 21-Nov-00 Warner Losh wrote:
: > In message <XFMail.001121131818.jhb@FreeBSD.org> John Baldwin writes:
: >: Oh geez. That should be ’Noticed by: jlemon’. I guess the voices are
: >: getting
: >: a bit too rambunctious.
: >
: > It could be worse. You could be talking about yourself in the third
: > person. Warner hates it when he does that.
:
: Well, I’m sure Warner will have a private discussion with Warner about
: doing that in public.

Warner will do that only if Warner notices.

: I wonder how the voices do their locking...

Warner Speculates that Warner’s voices don’t do
locking.

Other commit logs

The FreeBSD SMP implementation 54 Greg Lehey, 30 October 2003

From: John Baldwin <jhb@FreeBSD.ORG>

On 21-Nov-00 Warner Losh wrote:
> In message <XFMail.001121133952.jhb@FreeBSD.org> John Baldwin writes:
>: Well, I’m sure Warner will have a private discussion with Warner about
>: doing that in public.
>
> Warner will do that only if Warner notices.
>
>: I wonder how the voices do their locking...
>
> Warner Speculates that Warner’s voices don’t do locking.
John thinJohn’s voices are too inks that the consefficient to useole driver
doesn’t ha sleep locks and endve any lock up sping yeinning a lott.
fatal double fault
eip = 0x000000
ebp = %62F k epomn e

(untangled)

The FreeBSD SMP implementation 55 Greg Lehey, 30 October 2003

John thinJohn’s voices are too inks that the consefficient to
useole driver doesn’t ha sleep locks and endve any lock up
sping yeinning a lott.

1. John thinks that the console driver doesn’t hav e any
locking yet.

2. John’s voices are too inefficient to use sleep locks and
end up spinning a lot.

Performance

The FreeBSD SMP implementation 56 Greg Lehey, 30 October 2003

• Initial performance drop was expected due to scheduling in-
terrupts.

• Performance was better than initially expected.

• Final implementation should be much better (main project
aim).

• Most of kernel still locked by Giant.

• Current status: comparable to release 4, but
some areas need work.

• Light-weight threads still not implemented.

Performance (continued)

The FreeBSD SMP implementation 57 Greg Lehey, 30 October 2003

• What effect does this have on single processor systems?

• Currently we don’t know how good it will be.

• How do we address the ‘‘how many processors?’’ question?

• How much good will light-weight interrupt threads do?

Current status

The FreeBSD SMP implementation 58 Greg Lehey, 30 October 2003

• SMP conversion effectively complete.

• BSDi code was never released.

• Numerous subsystems not converted.

• Conversion may happen during reimplementation (e.g. GE-
OM, KSE).

• Light-weight threads to be implemented as part of KSE
project.

• KSE project not yet complete.

• Many dev elopers no longer run -CURRENT.

Further information

The FreeBSD SMP implementation 59 Greg Lehey, 30 October 2003

http://www.FreeBSD.org/

Join in! The FreeBSD project needs more clever hackers.

These slides are available at
http://www.lemis.com/grog/SMPng/Singapore/

