
Timekeeping

UNIX timekeeping is an untidy area, made more confusing by national and international laws
and customs. Broadly, there are two kinds of functions: one group is concerned with getting
and setting system times, and the other group is concerned with converting time representa-
tions between a bewildering number of formats.

Before we start, we’ll define some terms:

• A time zone is a definition of the time at a particular location relative to the time at other
locations. Most time zones are bound to political borders, and vary from one another in
steps of one hour, although there are still a number of time zones that are offset from
adjacent time zones by 30 minutes. Time zones tend to have three-letter abbreviations
(TLAs) such as PST (Pacific Standard Time), EDT (Eastern Daylight Time), BST (British
Summer Time), AET (Australian Eastern Time), MEZ (Mitteleuropäische Zeit). As the
example shows, you should not rely on the combination ST to represent Standard Time.

• UTC is the international base time zone, and has the distinction of being one of those
abbreviations which nobody can expand. It means Universal Coordinated Time, despite
the initials. It obviously doesn’t stand for the French Temps Universel Coordonné either.
It corresponds very closely, but not exactly, to Greenwich Mean Time (GMT), the local
time in England in the winter, and is the basis of all UNIX timestamps. The result is that
for most of us, UTC is not the current local time, though it might be close enough to be
confusing or far enough away to be annoying.

• From the standpoint of UNIX, you can consider the Epoch to be the beginning of
recorded history: it’s 00:00:00 UTC, 1 January 1970. All system internal dates are rela-
tive to the Epoch.

• Daylight Savings Time is a method of making the days appear longer in summer by set-
ting the clocks forward, usually by one hour. Thus in summer, the sun appears to set one
hour later than would otherwise be the case.

Even after clarifying these definitions, timekeeping remains a pain. We’ll look at the main
problems in the following sections:

269

5 February 2005 02:09



270

Difficult to use
The time functions are not easy to use: to get them to do anything useful requires a lot of
work. You’d think that UNIX would supply a primitive call upon which you could easily
build, but unfortunately there isn’t any such call, and the ones that are available do not operate
in an intuitively obvious way. For example, there is no standard function for returning the
current time in a useful format.

Implementations differ
There is no single system call that is supported across all platforms. Functions are imple-
mented as system calls in some systems and as library functions in others. As a result, it
doesn’t make sense to maintain our distinction between system calls and library functions
when it comes to timekeeping. In our discussion of the individual functions, we’ll note which
systems implement them as system calls and which as library calls.

Differing time formats
There are at least four different time formats:

• The system uses the time_t format, which represents the number of seconds since the
Epoch. This format is not subject to time zones or daylight savings time, but it is accu-
rate only to one second, which is not accurate enough for many applications.

• The struct timeval format is something like an extended time_t with a resolution of 1
microsecond:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

It is used for a number of newer functions, such as gettimeofday and setitimer.

• Many library routines represent the calendar time as a struct tm. It is usually defined in
/usr/include/time.h:

struct tm
{
int tm_sec; /* seconds after the minute [0-60] */
int tm_min; /* minutes after the hour [0-59] */
int tm_hour; /* hours since midnight [0-23] */
int tm_mday; /* day of the month [1-31] */
int tm_mon; /* months since January [0-11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0-6] */
int tm_yday; /* days since January 1 [0-365] */
int tm_isdst; /* Daylight Savings Time flag */

5 February 2005 02:09



Chapter 16: Timekeeping 271

long tm_gmtoff; /* offset from UTC in seconds */
char *tm_zone; /* timezone abbreviation */
};

Unlike time_t, a struct tm does not uniquely define the time: it may be a UTC time, or it
may be local time, depending on the time zone information for the system.

• Dates as a text string are frequently represented in a strange manner, for example Sat
Sep 17 14:28:03 1994\n. This format includes a \n character, which is seldom
needed — often you will have to chop it off again.

Daylight Savings Time
The support for Daylight Savings Time was rudimentary in the Seventh Edition, and the solu-
tions that have arisen since then are not completely compatible. In particular, System V han-
dles Daylight Savings Time via environment variables, so one user’s view of time could be
different from the next. Recent versions of BSD handle this via a database that keeps track of
local regulations.

National time formats
Printable representations of dates and times are very much a matter of local customs. For
example, the date 9/4/94 (in the USA) would be written as 4/9/94 in Great Britain and
04.09.94 in Germany. The time written as 4:23 pm in the USA would be written 16.23 in
France. Things get even worse if you want to have the names of the days and months. As a
result, many timekeeping functions refer to the locale kept by ANSI C. The locale describes
country-specific information. Since it does not vary from one system to the next, we won’t
look at it in more detail—see POSIX Programmer’s Guide, by Donald Lewine, for more
information.

Global timekeeping variables
A number of global variables define various aspects of timekeeping:

• The variable timezone, which is used in System V and XENIX, specifies the number of
minutes that the standard time zone is west of Greenwich. It is set from the environment
variable TZ, which has a rather bizarre syntax. For example, in Germany daylight sav-
ings time starts on the last Sunday of March and ends on the last Sunday of September
(not October as in some other countries, including the USA). To tell the system about
this, you would use the TZ string

MEZ-1MSZ-2;M3.5,M9.5

This states that the standard time zone is called MEZ, and that it is one hour ahead of
UTC, that the summer time zone is called MSZ, and that it is two hours ahead of UTC.
Summer time begins on the (implied Sunday of the) fifth week in March and ends in the
fifth week of September.

5 February 2005 02:09



272

The punctuation varies: this example comes from System V.3, which requires a semi-
colon in the indicated position. Other systems allow a comma here, which works until
you try to move the information to System V.3.

• The variable altzone, used in SVR4 and XENIX, specifies the number of minutes that
the Daylight Savings Time zone is west of Greenwich.

• The variable daylight, used in SVR4 and XENIX, indicates that Daylight Savings
Time is currently in effect.

• The variable tzname, used in BSD, SVR4 and XENIX, is a pointer to two strings, speci-
fying the name of the standard time zone and the Daylight Savings Time zone respec-
tively.

In the following sections we’ll look at how to get the current time, how to set the current time,
how to convert time values, and how to suspend process execution for a period of time.

Getting the current time
The system supplies the current time via the system calls time or gettimeofday—only one
of these is a system call, but the system determines which one it is.

time
#include <sys/types.h>
#include <time.h>

time_t time (time_t *tloc);

time returns the current time in time_t form, both as a return value and at tloc if this is not
NULL. time is implemented as a system call in System V and as a library function (which
calls gettimeofday) in BSD. Since it returns a scalar value, a call to time can be used as a
parameter to functions like localtime or ctime.

ftime
ftime is a variant of time that returns time information with a resolution of one millisecond.
It originally came from 4.2BSD, but is now considered obsolete.

#include <sys/types.h>
#include <sys/timeb.h>

typedef long time_t; /* (typically) */

struct timeb
{
time_t time; /* the same time returned by time */
unsigned short millitm; /* Milliseconds */
short timezone; /* System default time zone */
short dstflag; /* set during daylight savings time */

5 February 2005 02:09



Chapter 16: Timekeeping 273

};

struct timeb *ftime (struct timeb *tp);

The timezone returned is the system default, possibly not what you want. System V.4 depre-
cates* the use of this variable as a result. Depending on which parameters are actually used,
there are a number of alternatives to ftime. In many cases, time supplies all you need.
However, time is accurate only to one second.
On some systems, you may be able to define ftime in terms of gettimeofday, which
returns the time of the day with a 1 microsecond resolution—see the next section. On other
systems, unfortunately, the system clock does not have a finer resolution than one second, and
you are stuck with time.

gettimeofday
#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */
};

int gettimeofday (struct timeval *tp,
struct timezone *tzp); /* (BSD) */

int gettimeofday (struct timeval *tp); /* (System V.4) */

gettimeofday returns the current system time, with a resolution of 1 microsecond, to tp.
The name is misleading, since the struct timeval representation does not relate to the time
of day. Many implementations ignore tzp, but others, such as SunOS 4, return time zone
information there.

In BSD, gettimeofday is a system call. In some versions of System V.4 it is emulated as a
library function defined in terms of time, which limits its resolution to 1 second. Other ver-
sions of System V appear to have implemented it as a system call, though this is not docu-
mented.

* The term deprecate is a religious term meaning “to seek to avert by prayer”. Nowadays used to indi-
cate functionality that the implementors or maintainers wish would go away. This term seems to have
come from Berkeley. To quote the “New Hackers Dictionary”:

:deprecated: adj. Said of a program or feature that is considered obsolescent and in the
process of being phased out, usually in favor of a specified replacement. Deprecated features
can, unfortunately, linger on for many years. This term appears with distressing frequency in
standards documents when the committees writing the documents realize that large amounts of
extant (and presumably happily working) code depend on the feature(s) that have passed out of
favor. See also {dusty deck}.

5 February 2005 02:09



274

Setting the current time
Setting the system time is similar to getting it, except that for security reasons only the supe-
ruser (root) is allowed to perform the function. It is normally executed by the date program.

adjtime
#include <sys/time.h>

int adjtime (struct timeval *delta, struct timeval *olddelta);

adjtime makes small adjustments to the system time, and is intended to help synchronize
time in a network. The adjustment is made gradually—the system slows down or speeds up
the passage of time by a fraction of a percent until it has made the correction, in order not to
confuse programs like cron which are watching the time. As a result, if you call adjtime
again, the previous adjustment might still not be complete; in this case, the remaining adjust-
ment is returned in olddelta. adjtime was introduced in 4.3BSD and is also supported by
System V. It is implemented as a system call in all systems.

settimeofday
#include <sys/time.h>

int gettimeofday (struct timeval *tp, struct timezone *tzp);
int settimeofday (struct timeval *tp, struct timezone *tzp);

settimeofday is a BSD system call that is emulated as a library function in System V.4. It
sets the current system time to the value of tp. The value of tzp is no longer used. In Sys-
tem V, this call is implemented in terms of the stime system call, which sets the time only to
the nearest second. If you really need to set the time more accurately in System V.4, you can
use adjtime.

stime
#include <unistd.h>

int stime (const time_t *tp);

stime sets the system time and date. This is the original Seventh Edition function that is still
available in System V. It is not supported in BSD—use settimeofday instead on BSD sys-
tems.

Converting time values
As advertised, there are a large number of time conversion functions, made all the more com-
plicated because many are supported only on specific platforms. All are library functions.
Many return pointers to static data areas that are overwritten by the next call. Solaris attempts
to solve this problem with versions of the functions with the characters _r (for reentrant)

5 February 2005 02:09



Chapter 16: Timekeeping 275

appended to their names. These functions use a user-supplied buffer to store the data they
return.

strftime
#include <sys/types.h>
#include <time.h>
#include <string.h>

size_t strftime (char *s, size_t maxsize, char *format, struct tm *tm);

strftime converts the time at tm into a formatted string at s. format specifies the format of
the resultant string, which can be no longer than maxsize characters. format is similar to
the format strings used by printf, but contains strings related to dates. strftime has a
rather strange return value: if the complete date string, including the terminating NUL charac-
ter, fits into the space provided, it returns the length of the string—otherwise it returns 0,
which implies that the date string has been truncated.

strftime is available on all platforms and is implemented as a library function. System V.4
considers ascftime and cftime to be obsolete. The man pages state that strftime should
be used instead.

strptime
#include <time.h>

char *strptime (char *buf, char *fmt, struct tm *tm);

strptime is a library function supplied with SunOS 4. It converts the date and time string
buf into a struct tm value at tm. This call bears the same relationship to scanf that strf-
time bears to printf.

ascftime
#include <sys/types.h>
#include <time.h>

int ascftime (char *buf, char *fmt, tm *tm);

ascftime converts the time at tm into a formatted string at buf. format specifies the format
of the resultant string. This is effectively the same function as strftime, except that there is
no provision to supply the maximum length of buf. ascftime is available on all platforms
and is implemented as a library function.

asctime and asctime_r
#include <sys/types.h>
#include <time.h>

char *asctime (const struct tm *tm);

5 February 2005 02:09



276

char *asctime_r (const struct tm *tm, char *buf, int buflen);

asctime converts a time in struct tm* format into the same kind of string that is returned
by ctime. asctime is available on all platforms and is always a library function.

asctime_r is a version of asctime that returns the string to the user-provided buffer res,
which must be at least buflen characters long. It returns the address of res. It is supplied as
a library function on Solaris systems.

cftime
#include <sys/types.h>
#include <time.h>

int cftime (char *buf, char *fmt, time_t *clock);

cftime converts the time at clock into a formatted string at buf. format specifies the for-
mat of the resultant string. This is effectively the same function as strftime, except that
there is no provision to supply the maximum length of buf, and the time is supplied in
time_t format. cftime is available on all platforms and is implemented as a library func-
tion.

ctime and ctime_r
#include <sys/types.h>
#include <time.h>
extern char *tzname[2];

char *ctime (const time_t *clock);
char *ctime_r (const time_t *clock, char *buf, int buflen);

ctime converts the time clock into a string in the form Sat Sep 17 14:28:03 1994\n,
which has the advantage of consistency: it is not a normal representation anywhere in the
world, and immediately brands any printed output with the word UNIX. It uses the environ-
ment variable TZ to determine the current time zone. You can rely on the string to be exactly
26 characters long, including the final \0, and to contain that irritating \n at the end. ctime
is available on all platforms and is always a library function.

ctime_r is a version of ctime that returns its result in the buffer pointed to by buf. The
length is limited to buflen bytes. ctime_r is available on Solaris platforms as a library
function.

dysize
#include <time.h>

int dysize (int year);

dysize return the number of days in year. It is supplied as a library function in SunOS 4.

5 February 2005 02:09



Chapter 16: Timekeeping 277

gmtime and gmtime_r
#include <time.h>

struct tm *gmtime (const time_t *clock);
struct tm *gmtime_r (const time_t *clock, struct tm *res);

gmtime converts a time in time_t format into struct tm* format, like localtime. As the
name suggests, however, it does not account for local timezones—it returns a UTC time (this
was formerly called Greenwich Mean Time, thus the name of the function). gmtime is avail-
able on all platforms and is always a library function.

gmtime_r is a version of gmtime that returns the string to the user-provided buffer res. It
returns the address of res. It is supplied as a library function on Solaris systems.

localtime and localtime_r
#include <time.h>

struct tm *localtime (const time_t *clock);
struct tm *localtime_r (const time_t *clock, struct tm *res);

localtime converts a time in time_t format into struct tm* format. Like ctime, it uses
the time zone information in tzname to convert to local time. localtime is available on all
platforms and is always a library function.

localtime_r is a version of localtime that returns the string to the user-provided buffer
res. It returns the address of res. It is supplied as a library function on Solaris systems.

mktime
#include <sys/types.h>
#include <time.h>
time_t mktime (struct tm *tm);

mktime converts a local time in struct tm format into a time in time_t format. It does not
use tzname in the conversion — it uses the information at tm->tm_zone instead. In addition
to converting the time, mktime also sets the members wday (day of week) and yday (day of
year) of the input struct tm to agree with day, month and year. tm->tm_isdst determines
whether Daylight Savings Time is applicable:

• if it is > 0, mktime assumes Daylight Savings Time is in effect.

• If it is 0, it assumes that no Daylight Savings Time is in effect.

• If it is < 0, mktime tries to determine whether Daylight Savings Time is in effect or not.
It is often wrong.

mktime is available on all platforms and is always a library function.

5 February 2005 02:09



278

timegm
#include <time.h>

time_t timegm (struct tm *tm);

timegm converts a struct tm time, assumed to be UTC, to the corresponding time_t value.
This is effectively the same thing as mktime with the time zone set to UTC, and is the con-
verse of gmtime. timegm is a library function supplied with SunOS 4.

timelocal
#include <time.h>

time_t timelocal (struct tm *tm);

timelocal converts a struct tm time, assumed to be local time, to the corresponding
time_t value. This is similar to mktime, but it uses the local time zone information instead
of the information in tm. It is also the converse of localtime. timelocal is a library func-
tion supplied with SunOS 4.

difftime
#include <sys/types.h>
#include <time.h>

double difftime (time_t time1, time_t time0);

difftime returns the difference in seconds between two time_t values. This is effectively
the same thing as (int) time1 - (int) time0. difftime is a library function available
on all platforms.

timezone
#include <time.h>

char *timezone (int zone, int dst);

timezone returns the name of the timezone that is zone minutes west of Greenwich. If dst
is non-0, the name of the Daylight Savings Time zone is returned instead. This call is obso-
lete — it was used at a time when time zone information was stored as the number of minutes
west of Greenwich. Nowadays the information is stored with a time zone name, so there
should be no need for this function.

tzset
#include <time.h>

void tzset ();

5 February 2005 02:09



Chapter 16: Timekeeping 279

tzset sets the value of the internal variables used by localtime to the values specified in
the environment variable TZ. It is called by asctime. In System V, it sets the value of the
global variable daylight. tzset is a library function supplied with BSD and System V.4.

tzsetwall
#include <time.h>

void tzsetwall ();

tzsetwall sets the value of the internal variables used by localtime to the default values
for the site. tzsetwall is a library function supplied with BSD and System V.4.

Suspending process execution
Occasionally you want to suspend process execution for a short period of time. For example,
the tail program with the -f flag waits until a file has grown longer, so it needs to relinquish
the processor for a second or two between checks on the file status.

Typically, this is done with sleep. Howev er, some applications need to specify the length of
time more accurately than sleep allows, so a couple of alternatives hav e arisen: nap suspends
execution for a number of milliseconds, and usleep suspends it for a number of microsec-
onds.

nap
nap is a XENIX variant of sleep with finer resolution:

#include <time.h>

long nap (long millisecs);

nap suspends process execution for at least millisecs milliseconds. In practice, the XENIX
clock counts in intervals of 20 ms, so this is the maximum accuracy with which you can spec-
ify millisecs. You can simulate this function with usleep (see page 281 for more details).

setitimer
BSD systems and derivatives maintain three (possibly four) interval timers:

• A real time timer, ITIMER_REAL, which keeps track of real elapsed time.

• A virtual timer, ITIMER_VIRTUAL, which keeps track of process execution time, in other
words the amount of CPU time that the process has used.

• A profiler timer, ITIMER_PROF, which keeps track of both process execution time and
time spent in the kernel on behalf of the process. As the name suggests, it is used to
implement profiling tools.

5 February 2005 02:09



280

• A real time profiler timer, ITIMER_REALPROF, used for profiling Solaris 2.X multi-
threaded processes.

These timers are manipulated with the system calls getitimer and setitimer:

#include <sys/time.h>

struct timeval
{
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */
};

struct itimerval
{
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */
};

int getitimer (int which, struct itimerval *value);
int setitimer (int which, struct itimerval *value, struct itimerval *ovalue);

setitimer sets the value of a specific timer which to value, and optionally returns the pre-
vious value in ovalue if this is not a NULL pointer. getitimer just returns the current value
of the timer to value. The resolution is specified to an accuracy of 1 microsecond, but it is
really limited to the accuracy of the system clock, which is more typically in the order of 10
milliseconds. In addition, as with all timing functions, there is no guarantee that the process
will be able to run immediately when the timer expires.

In the struct itimerval, it_value is the current value of the timer, which is decremented
depending on type as described above. When it_value is decremented to 0, two things hap-
pen: a signal is generated, and it_value is reloaded from it_interval. If the result is 0,
no further action occurs; otherwise the system continues decrementing the counter. In this
way, one call to setitimer can cause the system to generate continuous signals at a specified
interval.

The signal that is generated depends on the timer. Here’s an overview:

Table 16−1: setitimer signals

Timer Signal

Real time SIGALRM

Virtual SIGVTALRM

Profiler SIGPROF

Real-time profiler1 SIGPROF

1 Only Solaris 2.x

The only timer you’re likely to see is the real time timer. If you don’t hav e it, you can fake it
with alarm. In System V.4, setitimer is implemented as a library function that calls an
undocumented system call. See The Magic Garden explained: The Internals of UNIX System

5 February 2005 02:09



Chapter 16: Timekeeping 281

V Release 4, by Berny Goodheart and James Cox, for more details.

setitimer is used to implement the library routine usleep.

sleep
#include <unistd.h>

unsigned sleep (u_int seconds);

The library routine sleep suspends program execution for approximately seconds seconds.
It is available on all UNIX platforms.

usleep
usleep is a variant of sleep that suspends program execution for a very short time:

#include <unistd.h>
void usleep (u_int microseconds);

usleep sleeps for at least microseconds microseconds. It is supplied on BSD and System
V.4 systems as a library function that uses the setitimer system call.

select and poll
If your system doesn’t supply any timing function with a resolution of less than one second,
you might be able to fake it with the functions select or poll. select can wait for nothing
if you ask it to, and since the timeout is specified as a struct timeval (see page 270), you
can specify times down to microsecond accuracy. You can use poll in the same way, except
that you specifies its timeout value in milliseconds.

For example,

void usleep (int microseconds)
{
struct timeval timeout;
timeout.tv_usec = microseconds % 1000000;
timeout.tv_sec = microseconds / 1000000;
select (0, NULL, NULL, NULL, &timeout);
}

or
void usleep (int microseconds)
{
poll (0, NULL, microseconds / 1000);
}

5 February 2005 02:09


