
Object files and friends

Object files are a special kind of file which store compiled programs. Normally, you manipu-
late them only as part of the build process, where you can treat them as a black box: you don’t
need to know what they look like inside.
Sometimes, however, some aspects of the true nature of object files become apparent—for
example:

• Your program bombs out with a segmentation violation, and when you check up you dis-
cover that it was trying to write to a valid storage location—so why did it bomb out? It
might be that the location was in the text segment, a part of the address space that is
read-only.

• You want to debug a program, and find that the debugger refuses to look at it, because it
doesn’t hav e any symbols — whatever that may mean.

• You recompile programs and run out of disk space—for some reason, the object files are
suddenly ten times the size that they used to be.

The information in this chapter is some of the most technical in the whole book, which is why
I’ve left it to the end. We look at a number of topics that are related only by their dependence
on object files. So far, the inter-platform differences we’ve seen have been the result of a
choice made by the software people who implemented the system. In this chapter, we come a
whole lot closer to the hardware — you can almost feel the clocks tick and the pipelines fill.
You definitely see instructions execute. You’ll find it an interesting look below covers that are
usually locked shut.
A number of programs manipulate the object files either because that’s their purpose—for
example, assemblers or linkers — or because they want to play tricks to install more comfort-
ably. For example, emacs and TEX both write themselves out as object files during the build
process. If anything goes wrong with these programs, you need to open the black box and
look inside. In this chapter, we’ll examine the tools that manipulate object files and some of
the background information that you need to know to solve problems.
There aren’t many programs that manipulate object files. The kernel uses absolute object files
when creating a process—this is the most frequent use of an object file. In addition, the
assembler creates them from assembly sources. In most UNIX systems, this is the only

353

6 February 2005 00:57

354

program that creates object files from scratch. The linker or link editor joins object files
together to form a larger object file, and debuggers access specific debugging information in
the object file. These are the only programs that have intimate understanding of the object file
format.
A number of smaller programs do relatively trivial things with object files:

• The archiver ar is normally used for archiving binary files, but it does not know very
much about their contents.

• The name list display program nm displays the symbol table or name list of an object file
or an archive of object files. We’ll look at the symbol table in more detail on page 363.

• size displays size information from an object file.

• strings displays printable strings in an object file.

• strip removes unnecessary information from an object file.

In the rest of this chapter, we’ll look at the following topics:

• The kernel process model that the object file supports.

• The assembler, including some of the syntax, the symbol table, relocation, and debug-
ging symbols.

• The linker, including the way it searches libraries, and some of the problems that can
occur during linking.

• The internal structure of function libraries, and how this affects what they can and cannot
do.

• How emacs and TEX dump themselves as object files.

• How exec starts programs.

Object formats
The purpose of object files is to make it as easy as possible to start a process, so it makes
sense to look at the process image in memory first. Modern UNIX systems run on stack-
based systems with virtual memory. We touched on the concept of virtual memory in Chapter
11, Hardware dependencies, on page 155. Since UNIX is a multiprogramming system, it is
possible for more than one process to run from a single object file. These facts have a signifi-
cant influence on the way the system manages processes. For each process, the system allo-
cates at least three segments in which program code and data is stored:

• A text segment, which contains the executable code of the program and read-only data.
Modern systems create code where the program may not write to its text segment — it is
so-called pure text. This has two significant advantages for the memory manager: first,
all processes in the system that are run from this program can share the same text seg-
ment, which significantly reduces the memory requirements when, say, 20 copies of a
shell are running. In addition, since the text is not modified, the memory management

6 February 2005 00:57

Chapter 21: Object files 355

routines never need to swap it out to disk. The copy on disk is always the same as the
copy in memory. This also means that the copy on disk can be the copy in the object file:
it does not take up any space in the swap partition.

Older systems also provided for impure text segments that could be modified by the program.
This usage is obsolete, but it is still supported by modern systems.

• A data segment. This consists of two parts:

− Global data that has been initialized in the program. This data can be modified, of
course, so it takes up space in the swap partition, but the first time the page is refer-
enced, the memory manager must load it from the object file.

− bss* data, non-initialized global data. Since the data is not initialized, it does not
need to be loaded from a file. The first time the page is referenced, the memory
manager just creates an empty data page. After that, it gets paged to the swap parti-
tion in the same way as initialized data.

• A stack segment. Like bss data, the stack segment is not initialized, and so is not stored
in the object file. Unlike any of the other segments, it does not contain any fixed
addresses: at the beginning of program execution, it is almost empty, and all data stored
in it is relative to the top of the stack or another stack marker. We’ll look at stack organi-
zation in more detail on page 377.

• In addition, many systems have library segments. From the point of view of memory
management, these segments are just additional text and data segments, but they are
loaded at run time from another object file, the library file.

Older systems without virtual memory stored the data segment below the stack segment with
a gap in between, the so-called break. The stack grew down into the break as the result of
push or call instructions, and the data segment grew up into the break as the result of system
calls brk and sbrk (set break). This additional space in the data segment is typically used for
memory allocated by the library call malloc. With a virtual memory system, the call to sbrk
is no longer necessary, but some versions of UNIX still require it, and all support it. Table
21-1 summarizes this information:

* The name comes from the assembler directive bss (Block Starting with Symbol), which was used in
older assemblers to allocate uninitialized memory and allocate the address of the first word to the label
of the directive. There was also a directive bes (Block Ending with Symbol) which allocated the address
of the last word to the label.

6 February 2005 00:57

356

Table 21−1: Kinds of segments

Property Text Initialized bss Stack
Segment Data Data Segment

In object file yes yes no no
Access r-x rw- rw- rw-
Paged out no yes yes yes
Fixed size yes yes maybe no

Object files contain the information needed to set up these segments. Before we continue, we
should be aware of a terminology change:

• The object file for a process is called a program.

• The images of process segments in an object file are called sections.

There are three main object file formats in current use:

• The a.out format is the oldest, and has remained essentially unchanged since the Seventh
Edition. It supplies support for a text section and a data section, as well as relocation
information for both sections. It is used by XENIX and BSD systems.

• The COFF (Common Object File Format) was introduced in System V, and offers an
essentially unlimited number of segments, including library segments. It is now obsoles-
cent, except for use in Microsoft Windows NT.

• The ELF (Executable and Linking Format) format was introduced for System V.4. From
our point of view, it offers essentially the same features as COFF. ELF shows promise as
the executable format of the future, since it greatly simplifies the use of shared libraries.
Currently the Linux project is moving from a.out to ELF.

With the exception of library segments, there’s not much to choose between the individual
object formats, but the internal structures and the routines that handle them are very different.
Let’s take an a.out header from a BSD system as an example. The header file sys/exec.h
defines:

struct exec
{
long a_magic; /* magic number */
unsigned long a_text; /* text segment size */
unsigned long a_data; /* initialized data size */
unsigned long a_bss; /* uninitialized data size */
unsigned long a_syms; /* symbol table size */
unsigned long a_entry; /* entry point */
unsigned long a_trsize; /* text relocation size */
unsigned long a_drsize; /* data relocation size */
};

/* a_magic */
#define OMAGIC 0407 /* old impure format */

6 February 2005 00:57

Chapter 21: Object files 357

#define NMAGIC 0410 /* read-only text */
#define ZMAGIC 0413 /* demand load format */
#define QMAGIC 0314 /* compact demand load format */

This header includes:

• A magic number. This specifies the exact kind of file (for example, whether it is relocat-
able or absolute). The program file can interpret this magic number and report the kind
of object file.

• The length of the text section, an image of the text segment. The text section immedi-
ately follows the header.

• The length of the data section, an image of the initialized global data part of the data seg-
ment — as we have seen, bss data does not need to be stored in the object file. The data
section immedately follows the text section.

• The length of the bss data. Since the bss data is not initialized, no space is needed for it
in the object file.

• The length of the symbol table. The symbol table itself is stored after the data section.

• The entry point, the address in the text segment at which execution is to start.

• The lengths of the text and data relocation tables, which are stored after the symbol table.
If you look at the above list of contents carefully, you’ll notice that there are no start addresses
for the segments, and there isn’t even any mention of the stack segment. The start address of
the text and data segments is implicit in the format, and it’s frequently difficult information to
figure out. On 32 bit machines, the text segment typically starts at a low address, for example
0 or 0x1000.* The data segment may start immediately after the text segment (on the follow-
ing page), or it might start at a predetermined location such as 0x40000000. The stack seg-
ment is usually placed high in the address space. Some systems place it at 0x7fffffff, oth-
ers at 0xefffffff. The best way to find out these addresses is to look through the address
space of a typical process with a symbolic debugger.
The magic number is worth closer examination: I said that it occupies the first two bytes of
the header, but in our example it is a long, four bytes. In fact, the magic number is used in
two different contexts:

• The first two bytes in the file are reserved for the magic number in all systems. The
information in these bytes should be sufficient to distinguish the architecture.

• The following two bytes may contain additional information for specific systems, but it is
often set to 0.

* Why 0x1000? It’s a wonderful debugging aid for catching NULL pointers. If the first page of memory
is not mapped, you’ll get a segmentation violation or a bus error if you try to access data at that address

6 February 2005 00:57

358

The assembler
Assembly is the second oldest form of programming*. It is characterized by being specific
about the exact instructions that the machine executes, which makes an assembler program
much more voluminous than a higher level language. Nevertheless, there is nothing difficult
about it, it’s just tedious.
Assembler programming involves two aspects that don’t hav e much in common:

• The instruction set of the machine in question. The best source of information for this
aspect is the hardware description of the machine. Even if you get an assembler manual
for the machine, it will not be as authoratative as the hardware description.

• The syntax of the assembler. This is where the problems start: first, little documentation
is available, and secondly, assembler syntax diverges greatly, and the documentation you
get may not match your assembler.

The i386 is a particularly sorry example of incompatible assembler syntax. The UNIX assem-
blers available for the i386 (at least three of them, not even compatible with each other) use
modified forms of the old UNIX as syntax, whereas all books about the assembler and the
hardware of the i386 use a syntax related to the Microsoft assembler MASM. They don’t even
agree on such basic things as the names of the instructions and the sequence of the operands.
Although nowadays it is used almost only for assembling compiler output, as frequently
offers features specifically intended for human programmers. In particular, most assemblers
support some kind of preprocessing: they may use the macro preprocessor m4 or the C pre-
processor when processing assembler source. See the description of the flags in Appendix C,
Assembler directives and flags, page 415, for more information.

Assembler syntax
Assembler syntax is a relatively involved topic, but there are some general rules that apply to
just about every assembler. In this section, we’ll see how to fight our way through an assem-
bler listing.

• Assemblers are line-oriented: each instruction to the assembler is placed on a separate
line.

• An instruction line consists of four parts:

− If the optional label is present, the assembler assigns a value to it. For most instruc-
tions, the value is the current value of the location counter, the relative address of
the instruction in the current section. In UNIX, if the label is present it is followed
by a colon (:). Other assemblers frequently require that only labels start at the
beginning of the line, and recognize them by this fact.

* The oldest form of programming, of course, used no computational aids whatsoever: in some form or
another, the programmer wrote down direct machine code and then entered into memory with a loader or
via front-panel switches. Assembly added the symbolic character to this operation.

6 February 2005 00:57

Chapter 21: Object files 359

The assembler usually translates the source file in a single pass. This means that
when it encounters the name of a label that is further down in the source file, it can-
not know its value or even if it exists. Some assemblers require that the name of the
label be followed with the letter b (backwards) for labels that should have already
been seen in the text, and f (forwards) for labels that are further down. In order to
avoid ambiguity, these assemblers also require that the labels be all digits. Many
other assemblers also support this syntax, so 1b is not a good name for a label.

− The next field is the instruction. In this context, assembler instructions are com-
mands to the assembler, and may be either directives, which tell the assembler to do
something not directly related to emitting code, or machine instructions, which emit
code. In UNIX, directives frequently start with a period (.).

− The third field contains the operands for the instruction. Depending on the
instruction, they may not be required.

− The fourth field is a comment field. It is usually delimited by a hash mark (#).

• The operands of instructions that take a source operand and a destination operand are
usually specified in the sequence src, dest.

• Register names are usually preceded with a % sign.

• Literal values are usually preceded with a $ sign.

For example, consider the instruction:

fred: movl $4,%eax # example

This instruction emits a movl instruction, which moves the literal* value 4 to the register eax.
The symbol fred is set to the address of the instruction.
We can’t go into all the details of the assembly language for all machines, but the descriptions
in Appendix C, Assembler directives and flags, page 415, will hopefully give you enough
insight to be able to read existing assembler source, though you’ll need more information
before you can write it. One of the few reasonably detailed as manuals is Using as, by Dean
Elsner and Jay Fenlason, which is included as part of the GNU binutils distribution.

Assembler symbols
Local symbols define instruction addresses. High-level constructs in C such as if, while and
switch require a number of jump (go to) instructions in assembler, and the compiler must
generate labels for the instructions.
Local symbols are also used to label literal data constants such as strings.
Global symbols defined in the source. The word global has different meanings in C and
assembler: in C, it is any symbol defined in the data or text segments, whether or not it is

* movl means “move long”, not “move literal”. In this particular assembler, we know that it is a literal
value because of the $ symbol, just as we know that eax is a register name because it is preceded by a %
sign.

6 February 2005 00:57

360

visible outside the module. In assembler, a global symbol is one that is visible outside the
module.
There are a couple of points to note here:

• C local variables are generated automatically on the stack and do not retain their names
after compilation. They do not have a fixed location, since their position on the stack
depends on what was already on the stack when the function was called. If the function
is recursive, they could even be in many different places on the stack at the same time.
As a result, there is nothing that the assembler or the linker can do with the symbols, and
the compiler discards them.

• There is a possibility of conflict between the local symbols generated by the compiler
and global symbols declared in the program. Most compilers avoid this conflict by
prepending an underscore (_) to all symbols defined in the program, and not using the
underscore for local symbols. Others solve the problem by prepending local symbols
with a period (.), which is not legal in a C identifier.

To see how this all works, let’s take the following small program and look at different aspects
of what the compiler and assembler do with it in the next few sections:

Example 21−1:

char global_text [] = "This is global text in the data area";
void inc (int *x, int *y)
{
if (*x)
(*x)++;

else
(*y)++;

puts (global_text); /* this is an external function */
puts ("That’s all, folks");
}

We compile this program on a BSD/OS machine using gcc version 2.5.8, with maximum opti-
mization and debugging symbols:

$ gcc -O2 -g -S winc.c

The -S flag tells the compiler control program to stop after running the compiler. It stores the
assembly output in winc.s, which looks like this:

Example 21−2:

.file "winc.c"
gcc2_compiled.:
___gnu_compiled_c:
.stabs "/usr/lemis/book/porting/grot/",100,0,0,Ltext0 name of the source directory
.stabs "winc.c",100,0,0,Ltext0 name of the source file
.text select text section
Ltext0: internal label: start of text
.stabs "int:t1=r1;-2147483648;2147483647;",128,0,0,0
.stabs "char:t2=r2;0;127;",128,0,0,0
... a whole lot of standard debugging output omitted

6 February 2005 00:57

Chapter 21: Object files 361

Example 21−2: (continued)

.stabs "void:t19=19",128,0,0,0

.globl _global_text specify an externally defined symbol

.data select data section

.stabs "global_text:G20=ar1;0;36;2",32,0,1,0 debug info for global symbol
_global_text: variable label

.ascii "This is global text in the data area " and text
.text select text section
LC0:

.ascii "That’s all, folks "

.align 2 start on a 16 bit boundary
.globl _inc define the function inc to be external
_inc: start of function inc

.stabd 68,0,3 debug information: start of line 3
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%eax
movl 12(%ebp),%edx
.stabd 68,0,4 debug information: start of line 4

LBB2:
cmpl $0,(%eax)
je L2
.stabd 68,0,5 debug information: start of line 5
incl (%eax)
jmp L3
.align 2,0x90

L2:
.stabd 68,0,7 debug information: start of line 7
incl (%edx)

L3:
.stabd 68,0,8 debug information: start of line 8
pushl $_global_text
call _puts
.stabd 68,0,9 debug information: start of line 9
pushl $LC0
call _puts
.stabd 68,0,10 debug information: start of line 10

LBE2:
leave
ret

.stabs "inc:F19",36,0,3,_inc debug information for inc

.stabs "x:p21=*1",160,0,2,8 debug information for x

.stabs "y:p21",160,0,2,1 debug information for y

.stabs "x:r21",64,0,2,0

.stabs "y:r21",64,0,2,2

.stabn 192,0,0,LBB2

.stabn 224,0,0,LBE2

We’ll look at various aspects of this output in the next few sections. For now, we should
notice:

• As advertised, the names of the global symbols global_text, inc and puts have been
changed to _global_text, _inc and _puts.

6 February 2005 00:57

362

• The compiler has created the local symbols Ltext0, LC0, LBB2, LBE2, L2 and L3.
Clearly it likes to start the names of local symbols with the letter L, and distinguish them
with numbers at the end. But what has happened to L1, for example? The compiler gen-
erated it, but the optimizer optimized it away. If you compile this same program without
the optimizer, the labels will all still be there.

• The compiler has assigned the local symbol LC0 to the string "That’s all, folks" so
that the assembler can refer to it.

• The variables x and y have disappeared, since they exist only on the stack.

Relocation information
Example 21-2 shows another dilemma that afflicts the linker: the program is not complete. It
refers to the external symbol _puts, and in addition it does not have a main function: the only
way to use it is for a function in another object file to call _inc. In order to do this, we need
to give the linker additional information:

• Information about the names of the external symbols that the object file references
(_puts in our example).

• Information about symbols defined in the object file that can be referenced by other
object files (_global_text and _inc in our example).

• Information about where external symbols are referenced in the object code.

• Information about where locations in the text and data segments are referenced in the
object code.

Why do we need to know where internal locations are referenced? The linker takes the text
and data sections from a large number of object files and makes a single text section and a sin-
gle data section out of them. The locations of the original sections from the individual object
files differ from one occasion to the next, but the addresses in the final executable must reflect
the correct references. If an instruction refers to an address in the data or text section or an
external symbol, the assembler can’t just put the address of the item in the instruction, since
the address is allocated by the linker. Instead, it places the offset from the beginning of the
text or data section or from the external symbol into the instruction or data word, and gener-
ates a relocation record in the output file. These relocation records contain the following
information:

• The address of the data that needs to be relocated. From the linker’s point of view, the
data may be an instruction, in which case it will need to modify only the address portion
of the instruction, or it may be a pointer, in other words an indirect address.

• The length of the data. For a data pointer, this is the length of the pointer. For an
instruction, it is the length of the address field of the instruction. Some systems have
strange instruction formats, and this can become quite complicated.

• Information about the section in which the data will be located. This could be the current
text or data section, or it could be a reference to an external symbol.

6 February 2005 00:57

Chapter 21: Object files 363

• For an external symbol, a pointer to information about the symbol.

Object files contain separate relocation tables for each section that can contain address
data — at least the text and data sections. Referring again to Example 21-2, we see that the
compiler has output .text and .data directives. These are used to tell the assembler in
which section it should put the output that follows. It also supplies relocation information for
the output file.

String table and name list
Amongst other things, the relocation information includes a significant number of strings.
These are stored in the string table, which is simply a list of strings terminated with a NUL
(\0) character. Other parts of the object file refer to strings by their offset in the string table.
As we saw in Example 21-2, the assembler has a directive (.globl in this example) that out-
puts information about externally visible symbols, such as global_text. Some assemblers
need to be told about external references (such as _puts in this example), and others don’t,
like the GNU assembler gas used here. For both external definitions and external references,
gas outputs an entry for the symbol table to the output file with information about the symbol.
This symbol table is one of the better-known parts of an object file, and is usually called the
name list. The structure differs strongly from one flavour of UNIX to the next, but all
namelists contain the following information:

• The index of the symbol’s name in the string table.

• The type of the symbol (undefined, absolute, text, data, bss, common).

• The value of the symbol, if it has one (undefined symbols don’t, of course).

The library function nlist accesses the symbol table and returns a symbol table entry. The call
is

#include <nlist.h>

int nlist (const char *filename, struct nlist *nl);

This function has confusing semantics: the symbol table structure struct nlist does not
contain the name of the symbol. Instead, it contains a pointer to the name of the symbol. On
disk, the symbol is located in the string list, but in your program you supply the strings in
advance. For the System V.4 ELF format, the structure is

struct nlist
{
char *n_name; /* name of symbol */
long n_value; /* value of symbol */
short n_scnum; /* section number */
unsigned short n_type; /* type and derived type */
char n_sclass; /* storage class */
char n_numaux; /* number of auxiliary entries */
};

6 February 2005 00:57

364

To use the nlist function, you create an array of struct nlist entries with n_name set to
the symbols you are looking for. The last entry contains a null string to indicate the end of the
list. nlist searches the symbol table and fills in information for the symbols it finds, and sets
all fields except n_name to 0 if it can’t find the string.
The return value differs from one system to another:

• If filename doesn’t exist, or if it isn’t an object file, nlist returns -1.

• If all symbols were found, nlist returns 0.

• If some symbols were not found, BSD nlist returns the number of symbols not found.
System V nlist still returns 0.

Examining symbol tables: the nm program
You can display the complete symbol table of an object file or an archive with the program nm.
Invoke it simply with

$ nm filename

nm output is frequently used by tools such as shell scripts used during building. This can be a
problem, since the format of the printout depends strongly on the object file format. In the
following sections we’ll look at the differences between nm output for a.out, COFF and ELF
files.

nm display of a.out format

With an a.out file, nm output looks like:

$ nm /usr/lib/libc.a

syscall.o: this is the object file name
00000028 T _syscall

U cerror

sigsuspend.o:
00000030 T _sigsuspend

U cerror

The lines with the file name and colon tell you the name of the archive member (in other
words, the object file) from which the following symbols come. The other lines contain a
value (which may be missing if it is not defined), a type letter, and a symbol name.
That’s all there is to a.out symbols. As we will see, a.out handles debugging information sep-
arately. On the other hand, this means that the type letters are reasonably easy to remember.
Upper case represents global symbols, lower case represents local symbols. Table 21-2 gives
an overview:

6 February 2005 00:57

Chapter 21: Object files 365

Table 21−2: a.out symbol types

Type Meaning
letter
- symbol table entries (see the -a flag).
A absolute symbol (not relocatable)
B bss segment symbol
C common symbol
D data segment symbol
f file name (always local)
T text segment symbol
U undefined

nm display of COFF format

By contrast,, COFF gives something like this:

$ nm /usr/lib/libc.a
Symbols from /lib/libc.a[printf.o]: this is the object file name

Name Value Class Type Size Line Section

printf.c | | file | | | |
DGROUP | 0|static| | | |.data
printf | 0|extern| | | |.text
_doprnt | 0|extern| | | |
_iob | 0|extern| | | |

These columns have the following meaning:

• Name is the name of the symbol.

• Value is the value of the symbol.

• Class is the storage class of the symbol. There are a large number of storage classes,
and the System V.3 man pages don’t describe them. See Understanding and using
COFF, by Gintaras R. Gircys, for a complete list. The one that interests us is extern
(externally defined symbols).

• In conjunction with Class, Type describes the type of symbol more accurately, when it is
needed. The symbols we’re looking at don’t need a more accurate description.

• Size specifies the size of the entry. This is used in symbolic debug information.

• Line is line number information, which is also used for symbolic debug information.

• Section is the section to which the symbol belongs. In our example, the familiar .text
and .data occur, but this could be any of the myriad COFF section names.

6 February 2005 00:57

366

nm display of ELF format

The differences between COFF and ELF are less obvious:

$ nm /lib/libc.so.1

Symbols from /lib/libc.so.1:

[Index] Value Size Type Bind Other Shndx Name

[1] | 0| 0|FILE |LOCL |0 |ABS |../../libc.so.1
[2] | 148| 0|SECT |LOCL |0 |1 |
... skipping
[32] | 208976| 12|OBJT |LOCL |0 |12 |libdirs
[33] | 208972| 4|OBJT |LOCL |0 |12 |rt_dir_list
[34] | 0| 0|FILE |LOCL |0 |ABS |dlfcns.c
[35] | 57456| 384|FUNC |LOCL |0 |8 |dl_delete
[36] | 56240| 72|FUNC |LOCL |0 |8 |lmExists
[37] | 56112| 128|FUNC |LOCL |0 |8 |appendLm
[38] | 56320| 464|FUNC |LOCL |0 |8 |dl_makelist
[39] | 214960| 4|OBJT |LOCL |0 |15 |dl_tail

These columns have the following meanings:

• Index is simply the index of the symbol in the symbol list.

• Value is the value of the symbol.

• Size is the size of the associated object in bytes.

• Type is the type of the object. This can be NOTY (no type specfied), OBJT (a data object),
FUNC (executable code), SECT (a section name), or FILE (a file name).

• Bind specifies the scope of the symbol. GLOB specifies that the symbol is global in scope,
WEAK specifies a global symbol with lower precendene, and LOCL specifies a local sym-
bol.

• Other is currently unused and contains 0.

• Shndx may be ABS, specifying an absolute symbol (in other words, not relocatable), COM-
MON specifies a bss block, and UNDEF specifies a reference to an external symbol. A
number in this field is an index into the section table of the section to which the symbol
relates. nm doesn’t tell you which section this is, so the information is not very useful.

Problems with nm output

As we have seen, the output of nm depends a lot on the object file format. You frequently see
shell scripts that use nm to look inside a file and extract information—they will go seriously
wrong if the object file format is not what they expect. If there isn’t an alternative script to
look at your kind of object file, you will have to modify it yourself.

6 February 2005 00:57

Chapter 21: Object files 367

Debugging information
Symbolic debuggers have a problem: they relate to the object file, but they want to give the
impression that they are working with the source file. For example, the program addresses
that interest you are source file line numbers, not absolute addresses, and you want to refer to
variables by their names, not their addresses. In addition, you expect the debugger to know
the types of variables, so that when you ask the debugger to display a variable of type char
*, it displays a string, and when you ask it to display a float, you get the correct numeric
value.
The object file structures we have seen so far don’t help too much. Information is available
for global symbols, both in the text and data sections, but the type information is not detailed
enough to tell the debugger whether a data variable is a char * or a float. The symbol ta-
ble information contains no information at all about local variables or line numbers. In addi-
tion, the symbol table information goes away at link time, so it wouldn’t be of much help any-
way.
For these reasons, separate data structures for debugging information were introduced. In the
a.out format, they hav e nothing to do with the rest of the file. In COFF and ELF, they are
more integrated, but debugging information has one thing in common in all object formats: it
is at the end of the file so that it can be easily removed when it is no longer wanted — debug-
ging information can become very large. It’s not uncommon to see debugging information
increase the size of an executable by a factor of 5 or 10. In extreme cases, such as in libraries,
it can become 50 times as big.
Frequently you’ll see a make all that creates an executable with debugging symbols, and a
make install that installs the same executable but removes the debugging symbols. This
process is called stripping, and can be done by the program strip or by install with the -s flag.
In order to do this, it makes sense for the debugging information to be in its own section at the
end of the file, and this is how all object file formats solve the problem.
Debugging information is supplied in the assembler source in the form of directives. In
Example 21-2, which is from an assembler designed to create a.out relocatables, this job is
done by the .stabs, .stabn and .stabd directives. These directives are discussed in more
detail in Appendix C, Assembler directives and flags, on page 421. Let’s look at the directives
in our example:

• At the beginning of the file there are a lot of .stabs directives defining standard data
types, so many that we have omitted most of them. The compiler outputs these directives
ev en if the data type isn’t used in the program, and they’re handy to have in case you
want to cast to this data type when debugging.

• Throughout the file you find individual .stabd 68 directives. These specify that the
line number specified in the last parameter starts at this point in the text.

• At the end of the function _inc, information about the function itself and the variables
associated with it appear in further .stabs directives.

• Finally, information about the block structure of the function appears in the .stabn
directive.

6 February 2005 00:57

368

This information is very dependent on the object file format. If you need more information,
the best source is the accompanying system documentation.

The linker
You usually encounter the linker as the last pass of the C compiler. As the name ld implies,
the linker was called the loader in the Seventh Edition, though all modern systems call it a
link editor.* Traditionally, the compiler compiles object files, and then runs the linker to create
an executable program. This is logical, since a single executable is always composed of mul-
tiple object files,† whereas there is a one-to-one relationship between source files and object
modules.
The most important function performed by the linker is symbol resolution. To understand
this, we need to define a few terms:

• The symbol list, sometimes called a symbol table, is an internal data structure where the
linker stores information about all symbols whose name it has encountered. It contains
the same kind of information about the symbol as we saw in struct nlist on page
363.

• An undefined symbol is only partially undefined: we know at least its name, but some
part of its value is unknown.

Initially, the symbol list is empty, but every file that is included adds to the list. A number of
cases can occur:

• The file refers to an undefined symbol. In this case, if the linker has not yet seen this
symbol, it enters it into the symbol list and starts a list of references to it. If the symbol
is already in the symbol list, the linker adds a reference to the symbol’s reference list.

• The file refers to a symbol that has already been defined. In this case, the linker simply
performs the required relocation.

• The file defines a symbol. There are three possibilities here:

− If the symbol has not been encountered before, it is just added to the symbol list.

− If the symbol is already marked as undefined, the linker updates the symbol infor-
mation and performs the required relocation for each element in the reference list.

− If the symbol is known and defined, it is now doubly defined. The linker prints an
error message, and will not create an output file.

At the same time as it creates the symbol list, the linker copies data and text sections into the
areas it has allocated for them. It copies each individual section to the current end of the area.
The symbol list entries reflect these addresses.

* Properly, the loader was the part of the operating system that loaded a program into memory prior to
execution. Once, long before the advent of UNIX, the two functions were almost synonymous.
† Even if you supply only a single object file yourself, you need the C startup code in crt0.o and library
modules from system libraries such as libc.a.

6 February 2005 00:57

Chapter 21: Object files 369

Function libraries
Many of the functions you use in linking an executable program are located in function
libraries, a kind of object file archive built by ar. The linker knows about the format of ar ar-
chives and is able to extract the object files from the archive. The resultant executable con-
tains code from the object files specified on the command line and from the object files found
in the libraries. The functions in the libraries are just like any others you may include. They
run in user context, not kernel context, and are stored in libraries simply for convenience. We
can consider three groups:

• The standard* C library, normally /usr/lib/libc.a. This library contains at least the func-
tions needed to link simple C programs. It may also contain functions not directly con-
nected with the C language, such as network interface functions—BSD does it this way.

• Additional libraries supporting system functions not directly concerned with the C pro-
gramming language. Networking functions may also fall into this category — System V
does it this way.

• Libraries supporting third party packages, such as the X11 windowing system.

Library search
You can specify object files to the linker in two different ways: you specify that an object file
is to be included in the output or that a library file is to be searched by specifying its name on
the command line. The library search is one of the most powerful functions performed by the
linker. Instead of including the complete library in the output file, the linker checks each
object file in the library for definitions of currently undefined symbols. If this is the case, it
includes the object file, and not the library. This has a number of implications:

• The linker includes only object files that define symbols referenced by the program, so
the program is a lot smaller than it would be if you included the complete library.

• We don’t want to include anything that isn’t required, so each object file usually defines a
single function. In some rare cases, it may define a small number of related functions
that always get included together.

• Each object file may refer to other external symbols, so including one file in an archive
may require including another one.

• If you compile a library with symbols, each single-function object file will contain
debugging information for all the external information defined in the header files. This
information is usually many times the size of the function text and data.

• Once the library has been searched, the linker forgets it. This has important conse-
quences which we’ll examine on page 373.

For reasons shrouded in history, you don’t specify the path name of the library file—instead

* Note the lower-case use of the word standard. Whether or not the library conforms to the ANSI/ISO
C Standard, it is a standard part of a software development system.

6 February 2005 00:57

370

you tell the linker the names of directories that may contain the libraries you are looking for,
and a coded representation of the library name. For example, if you want to include
/opt/lib/libreg ex.a in your search path, you would include -L/opt/lib -lregex in your
compiler or linker call:

• -L/opt/lib tells the linker to include /opt/lib in the list of directories to search.

• -lregex tells the linker to search for the file libreg ex.a in each of the directories to
search.

This can be a problem if you have four files /usr/lib/libfoo.a, /usr/lib/libbar.a, /opt/lib/libfoo.a
and /opt/lib/libbar.a, and you want to search only /opt/lib/libfoo.a and /usr/lib/libbar.a. In this
case, you can name the libraries explicitly.
To keep the pain of linking executables down to tolerable levels, the compiler control program
(usually cc) supplies a few library paths and specifications for free—normally the equivalent
of -L/usr/lib -lc, which at least finds the library /usr/lib/libc.a, and also supplies the path
to all other libraries in /usr/lib. You need only specify additional paths and libraries. Occa-
sionally this behaviour is undesirable: what if you deliberately want to exclude the standard
libraries, like if you’re building an executable for a different version of the operating system?
Some compilers give you an option to forget these libraries. For example, in gcc it is -nost-
dlib.
Like most aspects of UNIX, there is no complete agreement on where to store library files, but
most systems come close to the following arrangement:

• /usr/lib contains the basic system libraries as well as startup code like crt0.o and friends,
which are bound in to supply low-level support for the C language. We’ll look at this in
the next section.

• Some of these files used to be stored in /lib. Now adays /lib tends either not to be present
or, for compatibility’s sake, it is a symlink to /usr/lib.

• System V.4 systems place BSD compatibility libraries in /usr/ucblib*. Many of these
functions duplicate functions in /usr/lib.

• /usr/X11/lib, /usr/X/lib, /usr/lib/X11, /usr/lib/X11R6 and others are some of the places
that the X11 libraries might be hidden. This directory probably contains all the parts of
X11 and related code that are on your system.

Shared libraries
Some libraries can be very big. The X11R6 version libX11.a, the standard X11 functions,
runs to 630 kB on BSD/OS. The Motif library libXm.a is nearly 1.4 MB in size. This can
lead to enormous executables, even if the program itself is relatively small—the “500 kB
Hello world” syndrome. Since these functions are used in many programs, many copies of a
function may be active at any one time in the system. For example, just about every program

* UCB stands for the University of California at Berkeley, the home of the Berkeley Software Distribu-
tions. You’ll frequently find BSD-derived software stored in directories whose names start with the let-
ters ucb.

6 February 2005 00:57

Chapter 21: Object files 371

uses the function printf, which with its auxiliary functions can be quite big. To combat this,
modern UNIX flavours support shared libraries: the library itself is no smaller, but it is in
memory only once.
Tw o different library schemes are in current use: static shared libraries* and dynamic shared
libraries. Static shared libraries contain code which has been linked to run at a specific
address, which means that you could have difficulties if your program refers to two libraries
with overlapping address ranges, or if you use a different version of the library with functions
at slightly different addresses. Dynamic libraries get round this problem by linking at run
time, which requires a dynamic linker. Unless you’re building shared libraries, a topic beyond
the scope of this book, you don’t need to worry about the difference between the two. If you
do find yourself in the situation where you need to build shared libraries, your best source of
information is your operating system documentation.
A shared library performs two different functions:

• When you link your program, it supplies information about the locations of the functions
and data in the library. Some systems, such as SunOS 4, supply a “stub” file with a name
like libc.sa.1.9. Since it does not contain the code of the functions, it is relatively
small — on SunOS 4.1.3, it is 7996 bytes long. Other systems, such as System V.4, only
supply a single library file with a name like libc.so. The linker only includes enough
information for the dynamic loader to locate the functions in the library file at run time.

• At run time, it supplies the functions and data. On all systems, the file name is of the
form libc.so.1.9

It’s important to ensure that you use the same library to perform these two actions. If a func-
tion or a data structure changes between versions of the library, a program written for a differ-
ent version may work badly or crash. This is a common problem: most programs are distrib-
uted in executable form, and thus contain preconceived notions about what the library looks
like. Since we’re linking the program ourselves, we should not run in to this problem. If you
do run into problems, you can always fall back to static (unshared) libraries.

Other linker input
In addition to the user-specified object files and libraries, the C programming language
requires a few auxiliary routines to set up its run-time environment. These are stored in one
or more auxiliary object files in a place known to the compiler, usually /usr/lib. For example,
in the System V.4 example above, we can see how the compiler control program starts the
linker if we use the -v flag to the compiler:

$ gcc -v -u baz -o foo foo.o -L. -lbaz -lbar
/usr/ccs/bin/ld -V -Y P,/usr/ccs/lib:/usr/lib -Qy -o foo -u baz
/usr/ccs/lib/crt1.o /usr/ccs/lib/crti.o /usr/ccs/lib/values-Xa.o
/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8/crtbegin.o
-L. -L/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8 -L/usr/ccs/bin
-L/usr/ccs/lib -L/opt/lib foo.o -lbaz -lbar -lgcc -lc

* Don’t confuse static shared libraries with the term static libraries, which are traditional, non-shared
libraries.

6 February 2005 00:57

372

/opt/lib/gcc-lib/i386-unknown-sysv4.2/2.5.8/crtend.o
/usr/ccs/lib/crtn.o -lgcc

The same example in BSD/OS specifies the files /usr/lib/crt0.o, foo.o, -lbar, -lbaz, -lgcc, -lc
and -lgcc—only fractionally more readable. This example should make it clear why almost
nobody starts the linker directly.

Merging relocatable files
Occasionally you want to merge a number of object files into one large file. We’v e seen one
way of doing that: create an object file library with ar. You can also use the linker to create an
object file. Which you choose depends on why you want to make the file. If you are creating
a function library, use ar. As we hav e seen, the linker includes individual object files from the
archive. It also happily includes a relocatable object created by a previous invocation of the
linker, but in this case it includes the complete object, even if you don’t need all the functions.
You don’t often need to create relocatable objects with the linker: the only real advantage over
a library is that the resultant object is smaller and links faster. If you want to do it, you spec-
ify a flag, normally -r. For example,

$ ld -r foo.o bar.o baz.o -o foobarbaz.o

This links the three object files foo.o, bar.o and baz.o and creates a new object file foobarbaz.o
that contains all the functions and data in the three input files.

Problems with the link editor
Once you have compiled all your objects, you’re still not home. There are plenty of things
that can go wrong with the linkage step. In this section we’ll look at some of the more com-
mon problems.

Invalid linker flags

You normally invoke the linker via the compiler rather than calling it directly. This is a good
idea, as we saw in the previous section. If you have a Makefile with an explicit linker call, and
you run into trouble with linker flags, and the system documentation doesn’t help, consider
replacing the linker invocation with a compiler invocation.

Invalid object files

Occasionally, the package you are building may already contain object files. It’s unlikely that
you can to use them, but make is far too simplistic to notice the difference, and the result is
usually some kind of message from the linker saying that it can’t figure out what kind of file
this is. If you’re in doubt, use the file command:

$ file *.o
gram.o: 386 executable not stripped
main.o: ELF 32-bit LSB relocatable 80386 Version 1
scan.o: sparc executable not stripped

6 February 2005 00:57

Chapter 21: Object files 373

util.o: 80386 COFF executable not stripped - version 30821

Here are four different kinds of object files in the same directory. Occasionally, you will see
files like this that are there for a good reason: due to license reasons, there are no correspond-
ing sources, and there will be one object for each architecture that the package supports. In
this example, however, the file names are different enough that you can be reasonably sure
that these files are junk left behind from previous builds. If the object files are still there after
a make clean, you should remove them manually (and fix the Makefile).

Suboptimal link order

We hav e seen that the linker takes all objects it finds and puts their code and data into the code
and data segments in the order in which they appear. From the point of view of logic flow,
this works fine, but it can have significant performance implications on modern machines.
You might find that 95% of the execution time of a program is taken up by 5% of the code. If
this code is located contiguously, it will probably fit into the cache of any modern machine.
If, on the other hand, it is scattered throughout memory, it will require much more cache, pos-
sibly more than the machine can supply. This can result in a dramatic drop in performance.
Most linkers do not help you much in arranging functions. The simplest way is to put one
function in a file, like you do in an archive, and specify them in sequence in the linker invoca-
tion. For example, if you have five functions foo, bar, baz, zot, and glarp, and you have
determined that you need three functions next to each other in the sequence foo, glarp and
zot, you can invoke the linker with:

$ cc -o foobar foo.o glarp.o zot.o bar.o baz.o

Missing functions

The UNIX library mechanism works well and is reasonably standardized from one platform to
the next. The main problem you are likely to encounter is that the linker can’t find a function
that the program references. There can be a number of reasons for this:

• The symbol may not be a function name at all, but a reference to an undefined preproces-
sor variable. For example, in xfm version 1.1, the source file FmInfo.c contains:

if (S_ISDIR(mode))
type = "Directory";

else if (S_ISCHR(mode))
type = "Character special file";

else if(S_ISBLK(mode))
type = "Block special file";

else if(S_ISREG(mode))
type = "Ordinary file";

else if(S_ISSOCK(mode))
type = "Socket";

else if(S_ISFIFO(mode))
type = "Pipe or FIFO special file";

sys/stat.h defines the macros of the form S_ISfoo. They test the file mode bits for spe-
cific file types. System V does not define S_ISSOCK (the kernel doesn’t hav e sockets), so

6 February 2005 00:57

374

a pre-ANSI compiler assumes that S_ISSOCK is a reference to an external function. The
module compiles correctly, but the linker fails with an undefined reference to S_ISSOCK.
The obvious solution here is conditional compilation, since S_ISSOCK is a preprocessor
macro, and you can test for it directly with #ifdef:

type = "Ordinary file";
#ifdef S_ISSOCK

else if(S_ISSOCK(mode))
type = "Socket";

#endif
else if(S_ISFIFO(mode))

• The function is in a different library, and you need to specify it to the linker. A good
example is the networking code we mentioned on page 369: a reference to socket will
link just fine with no additional libraries on a BSD platform, but on some versions of
System V.3 you will need to specify -linet, and on System V.4 and other versions of
System V.3 you will need to specify -lsocket. The findf script can help here. It uses
nm to output symbol information from the files specified in LIBS, and searches the out-
put for a function definition whose name matches the parameter supplied. The search
parameter is a regular expression, so you can search for a number of functions at once.
For example, to search for strcasecmp and strncasecmp, you might enter:

$ findf str.*casecmp
/usr/lib/libc.a(strcasecmp.o): _strcasecmp
/usr/lib/libc.a(strcasecmp.o)): _strncasecmp
/usr/lib/libc_p.a(strcasecmp.po): _strcasecmp
/usr/lib/libc_p.a(strcasecmp.po)): _strncasecmp

Because of the differences in nm output format, findf looks very different on BSD sys-
tems and on System V. You may find that you need to modify the script to work on your
system. Example 21-3 shows a version for 4.4BSD:

Example 21−3:

LIBS="/usr/lib/lib* /usr/X11R6/lib/lib*"
nm $LIBS 2>/dev/null \
| awk -v fun=$1 \
’/ˆ\// {file = $1};
/ˆ[ˆ\/].*:/{member = $1};
$3 ˜ fun && $2 ˜ /T/ {
sub (":$", "", file); ; sub (":$", "):", member); print file "(" member "\t" $3}’

On a system like System V.4, which uses ELF format, the corresponding script is in
Example 21-4:

Example 21−4:

LIBS="/usr/lib/lib* /usr/X11R6/lib/lib*"
nm $LIBS 2>/dev/null \
| sed ’s:|: :g’ \
| gawk -v fun=$1 \
’/ˆSymbols from/ {file = $3};
$8 ˜ fun && $4 ˜ /FUNC/ { print file member "\t" $8 }’

6 February 2005 00:57

Chapter 21: Object files 375

Example 21−4: (continued)

Some versions of System V awk have difficulty with this script, which is why this ver-
sion uses GNU awk.

• The function is written in a different language, and the internal name differs from what
the compiler expected. This commonly occurs when you try to call a C function from
C++ and forget to tell the C++ compiler that the called function is written in C. We dis-
cussed this in Chapter 17, Header files, page 285.

• The function is part of the package, but has not been compiled because a configuration
parameter is set incorrectly. For example, xpm, a pixmap conversion program, uses str-
casecmp. Knowing that it is not available on all platforms, the author included the func-
tion in the package, but it gets compiled only if the Makefile contains the compiler flag
-DNEED_STRCASECMP.

• The function is supplied in a library within the package, but the Makefile is in error and
tries to reference the library before it has built it. You wouldn’t expect this ever to hap-
pen, since it is the purpose of Makefiles to avoid this kind of problem, but it happens
often enough to be annoying. It’s also not always immediately obvious that this is the
cause — if you suspect that this is the reason, but are not sure, the best thing is to try to
build all libraries first and see if that helps.

• The function is really not supplied in your system libraries. In this case, you will need to
find an alternative. We looked at this problem in detail in Chapter 18, Function libraries.

• The first reference to a symbol comes after the linker has searched the library in which it
is located.

Let’s look at the last problem in more detail: when the linker finishes searching a library, it
continues with the following file specifications. It is possible that another file later in the list
will refer to an object file contained in the library which was not included in the executable.
In this case, the symbol will not be found. Consider the following three files:

foo.c
main ()
{
bar ("Hello");
}

bar.c
void bar (char *c)
{
baz (c);
}

baz.c
void baz (char *c)
{
puts (c);
}

6 February 2005 00:57

376

We compile them to the corresponding object files, and then make libraries libbar.a and lib-
baz.a, which contain just the single object file bar.o and baz.o respectively. Then we try to
link:

$ gcc -c foo.c
$ gcc -c bar.c
$ gcc -c baz.c
$ ar r libbaz.a baz.o
$ ar r libbar.a bar.o
$ gcc -o foo foo.o -L. -lbaz -lbar
Undefined first referenced
symbol in file
baz ./libbar.a(bar.o)
ld: foo: fatal error: Symbol referencing errors. No output written to foo
$ gcc -o foo foo.o -L. -lbar -lbaz
$

In the first link attempt, the linker included foo.o, then searched libbaz.a and didn’t find any-
thing of interest. Then it went on to libbar.a and found it needed the symbol baz, but by that
time it was too late. You can solve the problem by putting the reference -lbar before -lbaz.
This problem is not even as simple as it seems: although it’s bad practice, you sometimes find
that libraries contain mutual references. If libbar.a also contained an object file zot.o, and baz
referred to it, you would have to link with:

$ gcc -o foo foo.o -L. -lbar -lbaz -lbar

An alternative seems even more of a kludge: with the -u flag, the linker will enter an unde-
fined symbol in its symbol table. In this example, we could also have written

$ gcc -u baz -o foo foo.o -L. -lbaz -lbar
$

Dumping to object files
Some programs need to perform significant processing during initialization. For example,
emacs macros are written in emacs LISP, and they take some time to load. Startup would be
faster if they were already in memory when the program is started. The only normal way to
have them in memory is to compile them in, and it’s very difficult to initialize data at compile
time as intricately as a program like emacs does it at run time.
The solution chosen is simple in concept: emacs does it once at run time. Then it dumps itself
to disk in object file format: it copies the text section directly from its own text area, since
there is no way it can be changed, and it writes the data section from its current data area,
including all of what used to be bss. It doesn’t need to copy the stack section, since it will be
recreated on initialization.
This rather daring approach works surprisingly well as long as emacs knows its own object
file format. UNIX doesn’t provide any way to find out, since there is normally no reason why
a program should know its own object file format. The result can be problems when porting a
package like this to a system with a different object format: the port runs fine until the first

6 February 2005 00:57

Chapter 21: Object files 377

executable dumps, but the dumped executable does not have a format that the kernel can rec-
ognize.
Other programs that use this technique are gcl (GNU common LISP) and TEX.

Process initialization and stack frames
In Chapter 12, Kernel dependencies, page 168, we examined the myriad flavours of exec.
They all pass arguments and environment information to the newly loaded program. From a
C program viewpoint, the arguments are passed as a parameter to main, and the environment
is just there for the picking. In this section we’ll look more closely at what goes on between
exec and main. In order to understand this, we need to look more closely at parameter pass-
ing.

Stack frames
Most modern machines have a stack-oriented architecture, even if the support is rather rudi-
mentary in some cases. Everybody knows what a stack is, but here we’ll use a more restric-
tive definition: a stack is a linear list of storage elements, each relating to a particular function
invocation. These are called stack frames. Each stack frame contains

• The parameters with which the function was invoked.

• The address to which to return when the function is complete.

• Sav ed register contents.

• Variables local to the function.

• The address of the previous stack frame.

With the exception of the return address, any of these fields may be omitted.* Typical stack
implementations supply two hardware registers to address the stack:

• The stack pointer points to the last used word of the stack.

• The frame pointer points to somewhere in the middle of the stack frame.

The resultant memory image looks like:

* Debuggers recognize stack frames by the frame pointer. If you don’t sav e the frame pointer, it will
still be pointing to the previous frame, so the debugger will report that you are in the previous function.
This frequently happens in system call linkage functions, which typically do not save a stack linkage, or
on the very first instruction of a function, before the linkage has been built. In addition, some optimizers
remove the stack frame.

6 February 2005 00:57

378

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Function arguments

Return address
Old value of frame pointer

Automatic variables

Temporary storage

Stack frame 0

Stack frame 1

Fr ame pointer

Stack pointer

Figure 21−1. Function stack frame

The individual parts of the stack frames are built at various times. In the following sections,
we’ll see how the stack gets set up and freed.

Setting up the initial parameters
exec builds the initial stack. The exact details are implementation-dependent, but most come
close to the way BSD/OS does it, so we’ll look at that.
The stack is always allocated at a fixed point in memory, 0xefbfe000 in the case of BSD/OS,
and grows downwards, like the stacks on almost every modern architecture. At the very top
of stack, is structure with information for the ps program:

struct ps_strings
{
char **ps_argv; /* first of 0 or more argument pointers */
int ps_argc; /* the number of argument pointers */
char **ps_envp; /* first of 0 or more environment pointers */
int ps_nenv; /* the number of environment pointers */

};

This structure is supplied for convenience and is not strictly necessary. Many systems, for
example FreeBSD, do not define it.
Next, exec places on the stack all environment variable strings, followed by all the program
arguments. Some systems severely limit the maximum size of these strings—we looked at
the problems that that can cause in Chapter 5, Building the package, page 74.
After the variable strings come two sets of NULL-terminated pointers, the first to the environ-
ment variables, the second to the program arguments.

6 February 2005 00:57

Chapter 21: Object files 379

Finally comes the number of arguments to main, the well-known parameter argc. At this
point, the stack looks like:

ps information

Environment variables

Program arguments

NULL

Environment pointers

NULL

more argument pointers

argv [1]

argv [0]

argc
Stack pointer

Figure 21−2. Stack frame at start of program

At this point, all the data for main is on the stack, but it’s not quite in the form that main
needs. In addition, there’s no return address. But where could main return to? All this work
has been done in the kernel by exec: we need to return to a place in the program. These prob-
lems are solved by the function start, the real beginning of the program: it calls main, and
then calls exit with the return value from main. Before doing so, it may perform some run-
time initializations. A minimal start function looks like this stripped down version of GNU
libc start.c, which is the unlikely name of the source file for crt0.o:

static void start (int argc, char *argp)
{
char **argv = &argp; /* set up a pointer to the first argument pointer */
__environ = &argv [argc + 1]; /* The environment starts just after argv */
asm ("call L_init"); /* call the .init section */
__libc_init (argc, argv, __environ); /* Do C and C++ library initializations */
exit (main (argc, argv, __environ)); /* Call the user program */

}

The asm directive is used for C++ initialization—we’ll look at that on page 380. But what’s
this? start calls main with three parameters! The third is the address of the environment
variable pointers. This is one of the best kept secrets in UNIX: main really has three parame-
ters:

6 February 2005 00:57

380

int main (int argc, char *argv [], char *envp []);

It isn’t documented anywhere, but it’s been there at least since the Seventh Edition and it’s
unlikely to go away, since there isn’t really any other good place to store the environment
variables.
By the time we have sav ed the stack linkage in main, the top of the stack looks like:

*argv [0]

argc

dummy return

dummy frame pointer

**environ

**argv

argc

return to start

saved frame pointer
Frame pointer

Stack pointer

start stack frame

main stack frame

Figure 21−3. Stack frame after entering main

Initializing C++ programs
What we’ve seen here is not enough for C++: before entering main, the program may need to
initialize global class instances. Since this is system library code, it can’t know what global
classes exist. The solution depends on the system:

• System V systems place this information in a special section, .init. The initialization
file crtn.o contains a default .init section containing a single return instruction. If a
C++ program has global initializers, it will create an .init section to initialize them. If
any object module before ctrn.o has an .init section, it will be included before the
.init section in ctrn.o. During program initialization, the function start calls the
.init section to execute the global constructors—this is the purpose of the asm direc-
tive on page 379.

• Systems based on a.out formats do not have this luxury. Instead, they compile special
code into main to call the appropriate constructors.

The difference between these two approaches can be important if you are debugging a C++
program which dies in the global constructors.

6 February 2005 00:57

Chapter 21: Object files 381

Stack growth during function calls
Now that we have an initial stack, let’s see how it grows and shrinks during a function call.
We’ll consider the following simple C program compiled on the i386 architecture:

foo (int a, int b)
{
int c = a * b;
int d = a / b;
printf ("%d %d0, c, d);
}

main (int argc, char *argv [])
{
int x = 4;
int y = 5;
foo (y, x);
}

The assembler code for the calling sequence for foo in main is:

pushl -4(%ebp) value of x
pushl -8(%ebp) value of y
call _foo call the function
addl $8,%esp and remove parameters

Register ebp is the base pointer, which we call the frame pointer. esp is the stack pointer.
The push instructions decrement the stack pointer and then place the word values of x and y
at the location to which the stack pointer now points.
The call instruction pushes the contents of the current instruction pointer (the address of the
instruction following the call instruction) onto the stack, thus saving the return address, and
loads the instruction pointer with the address of the function. We now hav e:

argc

return to start

saved frame pointer

local var x

local var y

parameter a

parameter b

return to main

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 21−4. Stack frame after call instruction

The called function foo saves the frame pointer (in this architecture, the register is called ebp,
for extended base pointer), and loads it with the current value of the stack pointer register esp.

6 February 2005 00:57

382

_foo: pushl %ebp save ebp on stack
movl %esp,%ebp and load with current value of esp

At this point, the stack linkage is complete, and this is where most debuggers normally set a
breakpoint when you request on to be placed at the entry to a function.
Next, foo creates local storage for c and d. They are each 4 bytes long, so it subtracts 8 from
the esp register to make space for them. Finally, it sav es the register ebx—the compiler has
decided that it will need this register in this function.

subl $8,%esp create two words on stack
pushl %ebx and save ebx register

At this point, our stack is now complete and looks like the diagram on page 377:

saved frame pointer

local var x

local var y

parameter a

parameter b

return to main

saved frame pointer

local var c

local var d

saved ebx contents

Frame pointer

Stack pointer

main stack frame

foo stack frame

Figure 21−5. Complete stack frame after entering called function

The frame pointer isn’t absolutely necessary: you can get by without it and refer to the stack
pointer instead. The problem is that during the execution of the function, the compiler may
save further temporary information on the stack, so it’s difficult to keep track of the value of
the stack pointer—that’s why most architectures use a frame pointer, which does stay con-
stant during the execution of the function. Some optimizers, including newer versions of gcc,
give you the option of compiling without a stack frame. This makes debugging almost impos-
sible.
On return from the function, the sequence is reversed:

movl -12(%ebp),%ebx and restore register ebx
leave reload ebp and esp
ret and return

The first instruction reloads the saved register ebx, which could be stored anywhere in the
stack. This instruction does not modify the stack.
The leave instruction loads the stack pointer esp from the frame pointer ebp, which effectively
discards the part stack below the saved ebp value. Then it loads ebp with the contents of the

6 February 2005 00:57

Chapter 21: Object files 383

word to which it points, the saved ebp, effectively reversing the stack linkage. The stack now
looks like it did on entry.
Next, the ret instruction pops the return address into the instruction pointer, causing the next
instruction to be fetched from the address following the call instruction in the calling function.
The function parameters x and y are still on the stack, so the next instruction in the calling
function removes them by adding to the stack pointer:

addl $8,%esp and remove parameters

Object Archive formats
As we have seen, object files are frequently collected into libraries, which from our current
point of view are archives maintained by ar. One of the biggest problems with ar archives is
that there are so many different forms. You’re likely to come across the following ones:

• The so-called common archive format. This format starts with the magic string
!<arch>\n. It is used both in System V.4 and in BSD versions since 4BSD.

• The PORT5AR format, which starts with the magic string <ar>. System V.3 defines it,
but doesn’t use it.

• The Seventh Edition archive, which starts with the magic number 0177545. It is also
used by XENIX and System V.2 systems. In System V.3 systems, file reports this format
as x.out randomized archive. 4.4BSD file refers to it as old PDP-11 archive, while
many System V.4 files don’t recognize it at all. UnixWare is one that does, and it calls it
a pdp11/pre System V ar archive.

As long as you stick to modern systems, the only archive type you’re likely to come across is
the common archive format. If you do find one of the others, you should remember that it’s
not the archive that interests you, it’s the contents. If you have another way to get the con-
tents, like the original object or source files, you don’t need to worry about the archive.

6 February 2005 00:57

