
Make

Nowadays, only the most trivial UNIX package comes without a Makefile, and you can
assume that the central part of building just about any package is:

$ make

We won’t go into the details of how make works here—you can find this information in Man-
aging projects with make, by Andrew Oram and Steve Talbott. In this chapter, we’ll look at
the aspects of make that differ between implementations. We’ll also take a deeper look at
BSD make, because it is significantly different from other flavours, and because there is very
little documentation available for it.

Terminology
In the course of evolution of make, a change in terminology has taken place. Both the old and
the new terminology are in current use, which can be confusing at times. In the following list,
we’ll look at the terms we use in this book, and then relate them to others which you might
encounter:

• A rule looks like:

target: dependencies
command
command

• A target is the name by which you invoke a rule. make implicitly assumes that you want
to create a file of this name.

• The dependencies are the files or targets upon which the target depends: if any of the
dependencies do not exist, or they are newer than the current target file, or the corre-
sponding target needs to be rebuild, then the target will be rebuilt (in other words, its
commands will be executed). Some versions of make use the terms prerequisite or
source to represent what we call dependencies.

• The commands are single-line shell scripts that get executed in sequence if the target
needs to be rebuilt.

317

5 February 2005 02:09

318

• variables are environment variables that make imports, explicitly named variables, or
implicit variables such as $@ and $<. Variables used to be called macros. They aren’t
really macros, since they don’t take parameters, so the term variable is preferable. BSD
make uses the term local variable for implicit variables. As we will see, they don’t cor-
respond exactly. SunOS uses the term dynamic macros for implicit variables.

Additional make features
A number of versions of make offer additional features beyond those of the version of make
described in Managing projects with make. In the following sections, we’ll look at:

• Internal variables

• Variables with special meanings

• Targets with special meanings

• Including other source files from the Makefile

• Conditional execution

• Variations on assignments to variables

• Functions

• Multiple targets

Internal variables
All versions of make supply internal variables, but the list differs between individual imple-
mentations. We’ll defer their discussion until we discuss BSD make, on page 324.

Variables with special meanings
A number of normal variables have taken on special meanings in some versions of make.
Here’s an overview:

• VPATH is a list of directory names to search for files named in dependencies. It is explic-
itly supported in GNU make, where it applies to all file searches, and is also supported,
but not documented, in some versions of System V.4. GNU make also supports a direc-
tive vpath.

• MAKE is the name with which make was inv oked. It can be used to invoke subordinate
makes, and has the special property that it will be invoked even if you have specified the
-n flag to make, indicating that you just want to see the commands that would be
executed, and you don’t want to execute them.

• In all modern versions of make, MAKEFLAGS is a list of the flags passed to make. make
takes the value of the environment variable MAKEFLAGS, if it exists, and adds the com-
mand line arguments to it. It is automatically passed to subordinate makes.

5 February 2005 02:09

Chapter 19: Make 319

• SHELL is the name of a shell to be used to execute commands. Note that many versions
of make execute simple commands directly, so you may find that this doesn’t hav e any
effect unless you include a shell metacharacter like ;.

The exact semantics of these variables frequently varies from one platform to another—in
case of doubt, read your system documentation.

Special targets
All versions of make define a number of targets that have special meanings. Some versions
define additional targets:

• .BEGIN is a target to be executed before any other target. It is supported by BSD make.

• .INIT is a target to be executed before any other target. It is supported by SunOS and
Solaris make.

• .END is a target to be executed after all other targets have been executed. It is supported
by BSD make.

• .DONE is a target to be executed after all other targets have been executed. It is supported
by SunOS and Solaris make.

• .FAILED is a target to be executed after all other targets have been executed. It is sup-
ported by SunOS and Solaris make.

• .INTERRUPT is a target to be executed if make is interrupted. It is supported by BSD
make.

• .MAIN is the default target to be executed if no target was specified on the command line.
If this target is missing, make will execute the first target in the Makefile. It is supported
by BSD make.

• .MAKEFLAGS is an alternate method to supply flags to subordinate makes. It is supported
by BSD make.

• .PATH is an alternate method to specify a search path for files not found in the current
directory. It is supported by BSD make.

• .MUTEX is used in System V.4 to synchronize parallel makes.

• GNU make uses the target .PHONY to indicate targets that do not create files, such as
clean and install. If by chance you have a file install in your directory, make will
determine that make install does not need to be executed, since install is up to date.
If you use GNU make, you can avoid this problem with:

.PHONY: all install clean

If you don’t hav e GNU make, you can usually solve the problem with

5 February 2005 02:09

320

all install clean: .FORCE
install commands

.FORCE:

In this example, .FORCE looks like a special target, as it is meant to. In fact, the name is
not important: you just need a name that doesn’t correspond to a real file.

In addition to special targets, BSD make also has special sources (in other words, special
dependencies). We’ll look at them on page 327.

include directive
Many modern makes allow you to include other files when processing the Makefile. Unfortu-
nately, the syntax is very variable:

• In GNU make, the syntax is simply include filename.

• In BSD make, the syntax is .include <filename> or .include “filename". The
syntax resembles that of the C preprocessor: the first form searches only the system
directories, the second form searches the current directory before searching the system
directories.

• In SunOS, Solaris and System V.4 make, the syntax is include filename, but the text
include must be at the beginning of the line.

• SunOS and Solaris make automatically include a file make.rules in the current directory
if it exists. Otherwise they include the file /usr/share/lib/make/make.rules.

Conditional execution
A number of versions of make support conditional execution of commands. GNU make has
commands reminiscent of the C preprocessor:

ifeq (${CC},gcc}
${CC} -traditional -O3 -g $*.c -c -o $<

else
${CC} -O $*.c -c -o $<

endif

BSD make has a different syntax, which also vaguely resembles the C preprocessor. Apart
from standard .if, .else and .endif, BSD make also provides an .ifdef directive and
additional operators analogous to #if defined:

• .if make (variable) checks whether variable is a main target of make (in other
words, if it was mentioned on the command line that invoked make).

• .if empty (variable) tests whether variable represents the empty string.

• .if exists (variable) tests whether the file variable exists.

5 February 2005 02:09

Chapter 19: Make 321

• .if target (variable) tests whether variable represents a defined target.

SunOS and Solaris have so-called conditional macros:

foo bar baz:= CC = mycc

This tells make that the variable (macro) CC should be set to mycc only when executing the
targets foo, bar, and baz.

Other forms of variable assignment
Simply expanded variables

make normally expands variables until no variable references remain in the result. Take the
following Makefile, for example:

CFLAGS = $(INCLUDE) $(OPT)
OPT = -g -O3
INCLUDE= -I/usr/monkey -I/usr/dbmalloc

all:
@echo CFLAGS: ${CFLAGS}

If you run make, you will get:

$ make
CFLAGS: -I/usr/monkey -I/usr/dbmalloc -g -O3

On the other hand, you can’t change the definition to:

CFLAGS = $(CFLAGS) -I/usr/monkey

If you do this, you will get:

$ make
makefile:7: *** Recursive variable ‘CFLAGS’ references itself (eventually). Stop.

make would loop trying to expand $(CFLAGS). GNU make solves this with simply expanded
variables, which go through one round of expansion only. You specify them with the assign-
ment operator := instead of the usual =. For example:

CFLAGS = -g -O3
CFLAGS := $(CFLAGS) -I/usr/monkey

In this case, CFLAGS expands to -g -O3 -I/usr/monkey.

define directive

You frequently see multi-line shell script fragments in make rules. They’re ugly and error-
prone, because in conventional make, you need to put this command sequence on a single line
with lots of backslashes and semicolons. GNU make offers an alternative with the define
directive. For example, to check for the existence of a directory and create it if it doesn’t
exist, you might normally write

5 February 2005 02:09

322

${INSTDIR}:
if [! -d $@]; then \
mkdir -p $@; \

fi

With GNU make, you can define this as a command:

define makedir
if [! -d $@]; then
mkdir -p $@

fi
endef

${INSTDIR}:
${makedir}

Override variable definitions

Conventional versions of make have three ways to define a make variable. In order of prece-
dence, they are:

1. Define it on the command line used to invoke make:

$ make CFLAGS="-g -O3"

2. Define it in the Makefile.

3. Define it in an environment variable. This is all the more confusing because most shells
allow you to write the environment variable on the same line as the invokation of make:

$ CFLAGS="-g -O3" make

This looks almost identical to the first form, but the precedence is lower.

The command line option has the highest priority. This is usually a good idea, but there are
times when you want the declaration in the Makefile to take precedence: you want to override
the definition on the command line. GNU make allows you to specify it with the override
directive. For example, you might want to insist that the optimization level be limited to -O2
if you’re generating debugging symbols. In GNU make, you can write:

override CFLAGS=-O2

Functions
As well as variables, GNU make supplies builtin functions. You call them with the syntax
${function arg,arg,arg}. These functions are intended for text manipulation and have
names like subst, findstring, sort, and such. Unfortunately there is no provision for
defining your own functions.

5 February 2005 02:09

Chapter 19: Make 323

Multiple targets
All forms of make support the concept of multiple targets. They come in two flavours:

• Single-colon targets, where the target name is followed by a single colon. Each target of
the same name may specify dependencies—this is how Makefile dependencies are speci-
fied — but only one rule may have commands. If any of the dependencies require the tar-
get to be rebuilt, then these commands will be executed. If you supply commands to
more than one rule, the behaviour varies: some versions of make will print a warning or
an error message, and generally they execute only the last rule with commands. Under
these circumstances, however, BSD make executes the first rule with commands.

• Double-colon targets have two colons after the target name. Each of these is indepen-
dent of the others: each may contain commands, and each gets executed only if the
dependencies for that rule require it. Unfortunately, if multiple rules need to be
executed, the sequence of execution of the rules is not defined. Most versions of make
execute them in the sequence in which they appear in the Makefile, but it has been
reported that some versions of BSD make execute in reverse order, which breaks some
Imakefiles.

BSD make
With the Net/2 release, the Computer Sciences Research Group in Berkeley released a com-
pletely new make with many novel features. Most BSD flavoured software that has come out
in the last few years uses it. Unfortunately, it contains a number of incompatibilities with
other makes. It is part of the 4.4BSD Lite distribution — see Appendix E, Where to get
sources for further details—and includes hardcopy documentation, which refers to it as
PMake. This name does not occur anywhere else, though you may see the name bsdmake.

We’v e already seen some of the smaller differences between BSD make and other flavours. In
the following sections we’ll look at some more significant differences. On page 327 we’ll
investigate the features of BSD make designed to make configuration easier.

Additional rule delimiter
There is a third delimiter between target and dependency in rules. Apart from the single and
double colon, which have the same meaning as they do with other makes, there is a ! delim-
iter. This is the same as the single colon delimiter in that the dependencies are the sum of all
dependencies for the target, and that only the first rule set gets executed. However, the com-
mands are always executed, even if all the dependencies are older than the target.

Assignment operators
BSD make supplies five different types of variable assignment:

• = functions as in other versions of make: the assignment CFLAGS = -g unconditionally
sets CFLAGS to -g.

5 February 2005 02:09

324

• += adds to a definition. If CFLAGS was set as in the previous example, writing CFLAGS
+= -O3 results in a new value -g -O3.

• ?= assigns a value only if the variable is currently undefined. This can be used to set
default values.

• := assigns and expands immediately. This is the same as the GNU make := assignment.

• != expands the value and passes it to a shell for execution. The result from the shell is
assigned to the variable after changing newline characters to spaces.

Variables
BSD make has clarified the definitions of variables somewhat. Although there is nothing
really new in this area, the terminology is arranged in a more understandable manner. It
defines four different kinds of variables, the first three of which correspond to the kinds of
variable assignment in other makes. In order of priority, they are:

• Environment variables

• global variables (just called variables in other flavours of make)

• command line variables

• local variables, which correspond roughly to implicit variables in other makes.

BSD make allows the use of the implicit variable symbols ($@ and friends), but doesn’t rec-
ommend it. They don’t match very well, anyway, so it makes sense not to use them. Local
variables are really variables that make predefines. Table 19-1 compares them to traditional
make variables:

Table 19−1: make local variables

Trad-

itional BSD Meaning

.ALLSRC, $> The list of all dependencies ("sources") for this target.

$ˆ (GNU make) The list of all dependencies of the current target.
Only the member name is returned for dependencies that rep-
resent an archive member. Otherwise this is the same as BSD
.ALLSRC.

$@ .ARCHIVE The name of the current target. If the target is an archive file
member, the name of the archive file.

$$@ .TARGET, $@ The complete name of the current target, even if it represents
an archive file.1

5 February 2005 02:09

Chapter 19: Make 325

Table 19−1: make local variables (continued)

Trad-

itional BSD Meaning

.IMPSRC, $< The implied source, in other words the name of the source file
(dependency) implied in an implicit rule.

$< The name of the current dependency that has been modified
more recently than the target. Traditionally, it can only be
used in suffix rules and in the .DEFAULT entry, but most mod-
ern versions of make (except BSD make) allow it to be used in
normal rules as well.

$% .MEMBER The name of an archive member. For example, if the target
name is libfoo.a(bar.o), $@ evaluates to libfoo.a and $%
evaluates to bar.o. Supported by GNU, SunOS and System
V.4 make.

$? .OODATE, $? The dependencies for this target that were newer than the tar-
get.2

$* The raw name of the current dependency, without suffix, but
possibly including directory components. Can only be used in
suffix rules.

${*F} .PREFIX, $* The raw file name of the current dependency. It does not con-
tain any directory component.

${*D} The directory name of the current dependency. For example,
if $@ evaluates to foo/bar.o, ${@D} will evaluate to foo.
Supported by GNU, SunOS and System V.4 make.

.CURDIR The name of the directory in which the top-level make was
started.

1 $$@ can only be used to the right of the colon in a dependency line. Supported by SunOS
and System V.4 make.
2 Confusingly, BSD make refers to these dependencies as out of date, thus the name of the
variable.

Variable substitution
In BSD make, variable substitution has reached a new lev el of complexity. All versions of
make support the syntax ${SRC:.c=.o}, which replaces a list of names of the form foo.c
bar.c baz.c with foo.o bar.o baz.o.. BSD make generalizes this syntax is into
${variable[:modifier[: . . .]]}. In the following discussion, BSD make uses the term
word where we would normally use the term parameter. In particular, a file name is a word.
modifier is an upper case letter:

5 February 2005 02:09

326

• E replaces each word in the variable with its suffix.

• According to the documentation, H strips the “last component” from each “word” in the
variable. A better definition is: it returns the directory name of each file name. If the
original file name didn’t hav e a directory name, the result is set to . (current directory).

• Mpattern selects those words from the variable that match pattern. pattern is a glob-
bing pattern such as is used by shells to specify wild-card file names.

• Npattern selects those words from the variable that don’t match pattern.

• R replaces each word in the variable with everything but its suffix.

• S/old/new/ replaces the first occurrence of the text old with new. The form
S/old/new/g replaces all occurrences.

• T replaces each word in the variable with its “last component”, in other words with the
file name part.

This is heavy going, and it’s already more than the documentation tells you. The following
example shows a number of the features:

SRCS = foo.c bar.c baz.cc zot.pas glarp.f src/mumble.c util/grunt.f
LANGS = ${SRCS:E}
DIRS = ${SRCS:H}
OBJS = ${SRCS:T}
CSRCS = ${SRCS:M*.c}
PASSRCS = ${SRCS:M*.pas}
FSRCS = ${SRCS:M*.f}
PROGS = ${SRCS:R}
PROFS = ${CSRCS:S/./_p./g:.c=.o}

all:
@echo Languages: ${LANGS}
@echo Objects: ${OBJS}
@echo Directories: ${DIRS}
@echo C sources: ${CSRCS}
@echo Pascal sources: ${PASSRCS}
@echo Fortran sources: ${FSRCS}
@echo Programs: ${PROGS}
@echo Profiled objects: ${PROFS}

If you run it, you get:

$ make
Languages: c c cc pas f c f
Objects: foo.c bar.c baz.cc zot.pas glarp.f mumble.c grunt.f
Directories: src util
C sources: foo.c bar.c src/mumble.c
Pascal sources: zot.pas
Fortran sources: glarp.f util/grunt.f
Programs: foo bar baz zot glarp src/mumble util/grunt
Profiled objects: foo_p.o bar_p.o src/mumble_p.o

5 February 2005 02:09

Chapter 19: Make 327

Special sources
In addition to special targets, BSD make includes special sources (recall that source is the
word that it uses for dependencies). Here are the more important special sources:

• .IGNORE, .SILENT and .PRECIOUS have the same meaning as the corresponding special
targets in other versions of make.

• .MAKE causes the associated dependencies to be executed even if the flags -n (just list
commands, don’t perform them) or -t (just update timestamps, don’t perform make) are
specified. This enables make to perform subsidiary makes even if these flags are speci-
fied. If this seems a strange thing to want to do, consider that the result of the main make
could depend on subsidiary makes to such an extent that it would not even make sense to
run make -n if the subsidiary makes did not run correctly—for example, if the subsidiary
make were a make depend.

• .OPTIONAL tells make that the specified dependencies are not crucial to the success of
the build, and that make should assume success if it can’t figure out how to build the tar-
get.

Specifying dependencies
We hav e seen that the bulk of a well-written Makefile can consist of dependencies. BSD make
offers the alternative of storing these files in a separate file called .depend. This avoids the
problem of different flavours of makedepend missing the start of the dependencies and adding
them again.

BSD Makefile configuration system
One of the intentions of BSD make is to make configuration easier. A good example of how
much difference it makes is in the Makefiles for gcc. In its entirety, the top-level Makefile is:

SUBDIR= cc cpp lib cc1 libgcc cc1plus cc1obj #libobjc
.include <bsd.subdir.mk>

The complete Makefile in the subdirectory cc1 (the main pass of the compiler) reads

@(#)Makefile 6.2 (Berkeley) 2/2/91

PROG= gcc1
BINDIR= /usr/libexec
SRCS= c-parse.c c-lang.c c-lex.c c-pragma.c \

c-decl.c c-typeck.c c-convert.c c-aux-info.c \
c-iterate.c

CFLAGS+= -I. -I$(.CURDIR) -I$(.CURDIR)/../lib
YFLAGS=
NOMAN= noman

.if exists(${.CURDIR}/../lib/obj)

5 February 2005 02:09

328

LDADD= -L${.CURDIR}/../lib/obj -lgcc2
DPADD= ${.CURDIR}/../lib/obj/libgcc2.a
.else
LDADD= -L${.CURDIR}/../lib/ -lgcc2
DPADD= ${.CURDIR}/../lib/libgcc2.a
.endif

LDADD+= -lgnumalloc
DPADD+= ${LIBGNUMALLOC}

.include <bsd.prog.mk>

The standard release Makefile for gcc is about 2500 lines long. Clearly a lot of work has gone
into getting the BSD Makefiles so small. The clue is the last line of each Makefile:

.include <bsd.subdir.mk>

or

.include <bsd.prog.mk>

These files are supplied with the system and define the hardware and software used on the
system. They are normally located in /usr/share/mk, and you can modify them to suit your
local preferences.

This configuration mechanism has little connection with the new BSD make. It could equally
well have been done, for example, with GNU make or System V make. Unfortunately, the
significant incompatibilities between BSD make and the others mean that you can’t just take
the configuration files and use them with other flavours of make.

The BSD system places some constraints on the Makefile structure. To get the best out of it,
you may need to completely restructure your source tree. To quote bsd.README:

It’s fairly difficult to make the BSD .mk files work when you’re building multiple programs in a
single directory. It’s a lot easier [to] split up the programs than to deal with the problem.
Most of the agony comes from making the “obj” directory stuff work right, not because we
switch to a new version of make. So, don’t get mad at us, figure out a better way to handle
multiple architectures so we can quit using the symbolic link stuff.

On the other hand, it’s remarkably easy to use BSD make configuration once you get used to
it. It’s a pity that the make itself is so incompatible with other makes: although the system is
good and works well, it’s usually not worth restructuring your trees and rewriting your Make-
files to take advantage of it.

There are a couple of other points to note about the configuration method:

• make depend is supported via an auxiliary file .depend, which make reads after reading
the Makefile.

• The configuration files are included at the end of the Makefile. This is due to the way
that BSD make works: unlike other makes, if multiple targets with a single colon exist,
only the first will be executed, but if multiple declarations of the same variable exist,
only the last one will take effect.

The configuration files consist of one file, sys.mk, which make automatically reads before

5 February 2005 02:09

Chapter 19: Make 329

doing anything else, and a number of others, one of which is usually included as the last line
in a Makefile. These are usually:

• bsd.prog.mk for a Makefile to make an executable binary.

• bsd.lib.mk for a Makefile to make a library.

• bsd.subdir.mk to make binaries or libraries in subdirectories of the current directory.

• In addition, another file bsd.doc.mk is supplied to make hardcopy documentation. In
keeping with the Cinderella nature of such parts of a package, no other file refers to it. If
you want to use it, you include it in addition to one of the other three. This is required
only for hardcopy documentation, not for man pages, which are installed by the other
targets.

sys.mk

sys.mk contains global definitions for all makes. make reads it in before looking for any
Makefiles. The documentation states that it is not intended to be modified, but since it con-
tains default names for all tools, as well as default rules for makes, there is every reason to
believe that you will want to change this file: there’s no provision to override these definitions
anywhere else. How you handle this dilemma is your choice. I personally prefer to change
sys.mk (and put up with having to update it when a new release comes), but you could create
another file bsd.own.mk, like FreeBSD does, and put your personal choices in there. The last
line of the FreeBSD sys.mk is

.include <bsd.own.mk>

With this method you can override the definitions in sys.mk with the definitions in
bsd.own.mk. It’s up to you to decide whether this is a better solution.

bsd.prog.mk

bsd.prog.mk contains definitions for building programs. Table 19-2 lists the targets that it
defines:

Table 19−2: bsd.prog.mk targets

Target Purpose

all Build the single program ${PROG}, which is defined in the Makefile.

clean remove ${PROG}, any object files and the files a.out, Errs, errs, mklog, and core.

cleandir remove all of the files removed by the target clean and also the files .depend,
tags, obj, and any manual pages.

depend make the dependencies for the source files, and store them in the file .depend.

5 February 2005 02:09

330

Table 19−2: bsd.prog.mk targets (continued)

Target Purpose

install install the program and its manual pages. If the Makefile does not itself define
the target install, the targets beforeinstall and afterinstall may also
be used to cause actions immediately before and after the install target is execut-
ed.

lint run lint on the source files.

tags create a tags file for the source files.

In addition, it supplies default definitions for the variables listed in Table 19-3. The operator
?= is used to ensure that they are not redefined if they are already defined in the Makefile (see
page 324 for more details of the ?= operator).

Table 19−3: variables defined in bsd.prog.mk

Variable Purpose

BINGRP Group ownership for binaries. Defaults to bin.

BINOWN Owner for binaries. Defaults to bin.

BINMODE Permissions for binaries. Defaults to 555 (read and execute permission for ev-
erybody).

CLEANFILES Additional files that the clean and cleandir targets should remove.
bsd.prog.mk does not define this variable, but it adds the file strings to the list if
the variable SHAREDSTRINGS is defined.

DPADD Additional library dependencies for the target ${PROG}. For example, if you
write DPADD=${LIBCOMPAT} ${LIBUTIL} in your Makefile, the target depends
on the compatibility and utility libraries.

DPSRCS Dependent sources—a list of source files that must exist before compiling the
program source files. Usually for a building a configuration file that is required
by all sources. Not all systems define this variable.

LIBC The C library. Defaults to /lib/libc.a.

LIBCOMPAT The 4.3BSD compatibility library. Defaults to /usr/lib/libcompat.a.

LIBCURSES The curses library. Defaults to /usr/lib/libcurses.a.

LIBCRYPT The crypt library. Defaults to /usr/lib/libcrypt.a.

LIBDBM The dbm library. Defaults to /usr/lib/libdbm.a.

LIBDES The des library. Defaults to /usr/lib/libdes.a.

LIBL The lex library. Defaults to /usr/lib/libl.a.

5 February 2005 02:09

Chapter 19: Make 331

Table 19−3: variables defined in bsd.prog.mk (continued)

Variable Purpose

LIBKDB Defaults to /usr/lib/libkdb.a.

LIBKRB Defaults to /usr/lib/libkrb.a.

LIBM The math library. Defaults to /usr/lib/libm.a.

LIBMP Defaults to /usr/lib/libmp.a.

LIBPC Defaults to /usr/lib/libpc.a.

LIBPLOT Defaults to /usr/lib/libplot.a.

LIBTELNET Defaults to /usr/lib/libtelnet.a.

LIBTERM Defaults to /usr/lib/libterm.a.

LIBUTIL Defaults to /usr/lib/libutil.a.

SRCS List of source files to build the program. Defaults to ${PROG}.c.

STRIP If defined, this should be the flag passed to the install program to cause the bina-
ry to be stripped. It defaults to -s.

The variables in Table 19-4 are not defined in bsd.prog.mk, but will be used if they hav e been
defined elsewhere:

Table 19−4: variables used by bsd.prog.mk

Variable Purpose

COPTS Additional flags to supply to the compiler when compiling C object
files.

HIDEGAME If defined, the binary is installed in /usr/games/hide, and a symbolic link
is created to /usr/games/dm.

LDADD Additional loader objects. Usually used for libraries.

LDFLAGS Additional loader flags.

LINKS A list of pairs of file names to be linked together. For example
LINKS= ${DESTDIR}/bin/test ${DESTDIR}/bin/[links /bin/test
to /bin/[.

NOMAN If set, make does not try to install man pages. This variable is defined
only in bsd.prog.mk, and not in bsd.lib.mk or bsd.man.mk.

PROG The name of the program to build. If not supplied, nothing is built.

SRCS List of source files to build the program. If SRC is not defined, it’s as-
sumed to be ${PROG}.c.

5 February 2005 02:09

332

Table 19−4: variables used by bsd.prog.mk (continued)

Variable Purpose

SHAREDSTRINGS If defined, the Makefile defines a new .c.o rule that uses xstr to create
shared strings.

SUBDIR A list of subdirectories that should be built as well as the targets in the
main directory. Each target in the main Makefile executes the same tar-
get in the subdirectories. Note that the name in this file is SUBDIR,
though it has the same function as the variable SUBDIRS in bsd.sub-
dir.mk.

There are a couple more points to note:

• If the file ../Makefile.inc exists, it is included before the other definitions. This is one
possibility for specifying site preferences, but of course it makes assumptions about the
source tree structure, so it’s not completely general.

• The file bsd.man.mk is included unless the variable NOMAN is defined. We’ll take another
look at bsd.man.mk on page 333.

bsd.lib.mk

bsd.lib.mk contains definitions for making library files. It supplies the same targets as
bsd.prog.mk, but defines or uses a much more limited number of variables:

Table 19−5: Variables defined or used in bsd.lib.mk

Variable Purpose

LDADD Additional loader objects.

LIB The name of the library to build. The name is in the same form that you find in
the -l option to the C compiler—if you want to build libfoo.a, you set LIB to
foo.

LIBDIR Target installation directory for libraries. Defaults to /usr/lib.

LIBGRP Library group owner. Defaults to bin.

LIBOWN Library owner. Defaults to bin.

LIBMODE Library mode. Defaults to 444 (read access for everybody).

LINTLIBDIR Target directory for lint libraries. Defaults to /usr/libdata/lint.

NOPROFILE If set, only standard libraries are built. Otherwise (the default), both standard li-
braries (libfoo.a) and profiling libraries (libfoo_p.a) are built.*

SRCS List of source files to build the library. Unlike in bsd.prog.mk, there is no default
value.

5 February 2005 02:09

Chapter 19: Make 333

Given the choice of compiling foo.s or foo.c, bsd.lib.mk chooses foo.s. Like bsd.prog.mk, it
includes bsd.man.mk. Unlike bsd.prog.mk, it does this even if NOMAN is defined.

bsd.subdir.mk

bsd.subdir.mk contains definitions for making files in subdirectories. Since only a single pro-
gram target can be made per directory, BSD-style directory trees tend to have more branches
than others, and each program is placed in its own subdirectory. For example, if I have three
programs foo, bar and baz, I might normally write a Makefile with the rule

all: foo bar baz

foo: foo.c foobar.h conf.h

bar: bar.c foobar.h zot.h conf.h

baz: baz.c baz.h zot.h conf.h

As we have seen, this is not easy to do with the BSD configuration scheme. Instead, you
might place all the files necessary to build foo in the subdirectory foo, and so on. You could
then write

SUBDIRS = foo bar baz
.include <bsd.subdir.mk>

foo/Makefile could then contain

PROG = foo
DPADD = foo.c foobar.h conf.h
.include <bsd.prog.mk>

bsd.subdir.mk is structured in the same way as bsd.prog.mk. Use bsd.prog.mk for making files
in the same directory, and bsd.subdir.mk for making files in subdirectories. If you want to do
both, use bsd.prog.mk and define SUBDIR instead of SUBDIRS.

bsd.man.mk

bsd.man.mk contains definitions for installing man pages. It is included from bsd.prog.mk and
bsd.lib.mk, so the target and variables are available from both of these files as well. It defines
the target maninstall, which installs the man pages and their links, and uses or defines the

A profiling library is a library that contains additional code to aid profilers, programs that analyze the
CPU usage of the program. We don’t cover profiling in this book.

5 February 2005 02:09

334

variables described in Table 19-6:

Table 19−6: Variables defined or used by bsd.man.mk

Variable Meaning

MANDIR The base path of the installed man pages. Defaults to /usr/share/man/cat. The
section number is appended directly to MANDIR, so that a man page foo.3 would
be installed in /usr/share/man/cat3/foo.3.

MANGRP The group that owns the man pages. Defaults to bin.

MANOWN The owner of the man pages. Defaults to bin.

MANMODE The permissions of the installed man pages. Defaults to 444 (read permission
for anybody).

MANSUBDIR The subdirectory into which to install machine specific man pages. For example,
i386 specific pages might be installed under /usr/share/man/cat4/i386. In this
case, MANSUBDIR would be set to /i386.

MANn (n has the values 1 to 8). Manual page names, which should end in .[1-8]. If
no MANn variable is defined, MAN1=${PROG}.1 is assumed.

MLINKS A list of pairs of names for manual page links. The first filename in a pair must
exist, and it is linked to the second name in the pair.

bsd.own.mk

Not all variants of the BSD configuration system usebsd.own.mk. Where it is supplied, it con-
tains default permissions, and may be used to override definitions in sys.mk, which includes it.

bsd.doc.mk

bsd.doc.mk contains definitions for formatting hardcopy documentation files. It varies signifi-
cantly between versions and omits even obvious things like formatting the document. It does,
however, define the variables in Table 19-7, which can be of use in your own Makefile:

Table 19−7: Variables defined in bsd.doc.mk

Variable Meaning

PRINTER Not a printer name at all, but an indicator of the kind of output format to be used. This is the
argument to the troff flag -T. Defaults to ps (PostScript output).

BIB The name of the bib processor. Defaults to bib.

COMPAT Compatibility mode flag for groff when formatting documents with Berkeley me macros.
Defaults to -C.

5 February 2005 02:09

Chapter 19: Make 335

Table 19−7: Variables defined in bsd.doc.mk (continued)

Variable Meaning

EQN How to inv oke the eqn processor. Defaults to eqn -T${PRINTER}.

GREMLIN The name of the gremlin processor. Defaults to grn.

GRIND The name of the vgrind processor. Defaults to vgrind -f.

INDXBIB Name of the indxbib processor. Defaults to indxbib.

PAGES Specification of the page range to output. Defaults to 1-.

PIC Name of the pic processor. Defaults to pic.

REFER Name of the refer processor. Defaults to refer.

5 February 2005 02:09

