
Kernel dependencies

The biggest single problem in porting software is the operating system. The operating system
services play a large part in determining how a program must be written. UNIX versions dif-
fer enough in some areas to require significant modifications to programs to adapt them to a
different version. In this and the following chapters, we’ll look at what has happened to
UNIX since it was essentially a single system, round the time of the Seventh Edition.

Many books have been written on the internals of the various UNIX flavours, for example The
Design of the UNIX System by Maurice Bach for System V.2, The Design and the Implemen-
tation of the 4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels,
and John Quarterman for 4.3BSD, and The Magic Garden explained: The Internals of UNIX
System V Release 4 by Berny Goodheart and James Cox for System V.4. In addition, a num-
ber of books have been written about programming in these environments —Advanced Pro-
gramming in the UNIX environment by Richard Stevens gives an excellent introduction to
System V.4 and “4.3+BSD"* for programmers. In this chapter and the ones following it, we’ll
restrict our view to brief descriptions of aspects that can cause problems when porting soft-
ware from one UNIX platform to another. We’ll look at specific areas in Chapter 12, Kernel
dependencies, Chapter 13, Signals, Chapter 14, File systems and Chapter 15, Terminal drivers.
In the rest of this chapter, we’ll look at:

• Interprocess communication

• Non-blocking I/O

• Miscellaneous aspects of kernel functionality

The descriptions are not enough to help you use the functionality in writing programs: they
are intended to help you understand existing programs and rewrite them in terms of functions
available to you. If you need more information, you may find it in the 4.4BSD man pages
(see Appendix E, Where to get sources), or in Advanced Programming in the UNIX environ-
ment, by Richard Stevens.

* 4.3BSD was released in 1987, 4.4BSD in 1994. In the time in between, releases had names like
4.3BSD Tahoe, 4.3BSD Reno, and NET/2. For want of a better term, Stevens refers to systems roughly
corresponding to NET/2 as 4.3+BSD.
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Interprocess communication
interprocess communication (frequently written as the abbreviation IPC), the ability to trans-
fer data between processes, was one of the important original concepts of UNIX. The original
methods were what you might expect of a concept that, at the time, was revolutionary and still
under development: there were more than a few limitations. Even today there is no agreement
on how interprocess communication should take place.

In this section we’ll look very briefly at the various kinds of interprocess communication, and
what to do if the package you are porting uses a method your kernel doesn’t support. To start
with the bad news: if you find your kernel doesn’t support the IPC model that the package
expects, you will probably need to make significant modifications to adapt it to a different
model.

Interprocess communication was originally limited to a single processor, but of course net-
work communication is also a form of interprocess communication. We’ll touch briefly on
network communication in the following discussion.

UNIX systems offer a bewildering number of different forms of interprocess communication:

• Pipes are the original form of communication and are found in all versions of UNIX.
They hav e the disadvantages that they transfer data in one direction only, and that they
can only connect two processes that have a common ancestor.

• Sockets are the BSD interprocess communication mechanism: they are by far the most
powerful mechanism, offering unidirectional, bidirectional and network communication.
In BSD systems, they are even used to implement the pipe system call.

• STREAMS* is a generalized I/O concept available in newer System V systems and their
derivatives. It was originally intended to replace character device drivers, but its flexibil-
ity makes it useful for interprocess communication as well. Like sockets, it can be used
both for local and remote communication. UNIX Network Programming, by Richard
Stevens, describes STREAMS in some detail, and The Magic Garden Explained
describes the implementation. We won’t consider them further here.

• Stream pipes differ from normal pipes by being able to transfer data in both directions.
They hav e no particular connection with STREAMS.

• FIFOs, also called named pipes, are like pipes, but they hav e a name in the file system
hierarchy.

• Named stream pipes are stream pipes with names. They bear the same relationship to
stream pipes that FIFOs do to normal pipes.

• System V IPC is a bundle that offers message queues, yet another form of message pass-
ing, shared memory, which enables processes to pass data directly, and semaphores,
which synchronize processes.

* Why the shouting? STREAMS was derived from the Eighth Edition Streams concept (see S Stream
Input-Output System, by Dennis Ritchie). System V always spells it in upper case, so this is a con-
venient way of distinguishing between the implementations.
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In the following sections, we’ll look at these features in a little more detail.

Pipes
The original UNIX interprocess communication facility was pipes. Pipes are created by the
pipe function call:

#include <unistd.h>

int pipe (int *fildes);

This call creates a pipe with two file descriptors, a read descriptor and a write descriptor. It
returns the value of the read descriptor to fildes [0] and the value of the write descriptor to
fildes [1]. At this point, only the creating process can use the pipe, which is not very use-
ful. After calling fork, howev er, both of the resultant processes can use the pipe. Depending
on their purpose, the processes may decide to close one direction of the pipe: for example, if
you write output to the more program, you don’t expect any reply from more, so you can close
the read file descriptor.

A fair amount of code is involved in opening a pipe, starting a new process with fork and
exec and possibly waiting for it terminate with wait. The standard library functions popen
and pclose make this job easier:

#include <stdio.h>

FILE *popen(const char *command, const char *type);
int pclose(FILE *stream);

popen creates a pipe, then forks and execs a shell with command as its parameter. type speci-
fies whether the pipe should be open for reading (“r”) or writing (“w”). Since pipes are unidi-
rectional, they cannot be opened both for reading and for writing.

After opening the command, you can write to the process with normal write commands. On
completion, pclose waits for the child process to terminate and closes the file descriptors.

Sockets
Sockets were originally developed at Berkeley as part of the TCP/IP networking implementa-
tion introduced with 4.2BSD, but they are in fact a general interprocess communication facil-
ity. In BSD systems, the other interprocess communication facilities are based on sockets.

Most of the features of sockets are related to networking, which we don’t discuss here. The
call is:

#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

• domain specifies the communications domain. Common domains are AF_UNIX (UNIX

5 February 2005 02:09



164

domain),* used for local communication, AF_INET (Internet domain), and AF_ISO (ISO
protocol domain).

• type specifies the type of socket. For local interprocess communication, you would use
SOCK_STREAM, which supplies a reliable two-way communication channel.

• protocol specifies the communications protocol to use. In the UNIX domain, this
parameter is not used and should be set to 0.

As we shall see in the next section, the way that pipes are implemented means that you need
two sockets to simulate a pipe. You can do this with the socketpair system call, which creates
a pair of file descriptors with identical properties.

#include <sys/types.h>
#include <sys/socket.h>

int socketpair (int domain, int type, int protocol, int *sv);

Currently, socketpair works only in the UNIX domain, so you don’t hav e much choice in
the parameters: domain must be AF_UNIX, type must be SOCK_STREAM, and protocol is
meaningless in the UNIX domain. The only important parameter is sv, which is where the
socket descriptors are returned—exactly the same thing as the fildes parameter to pipe.

Most systems have some kind of socket support, but sometimes it is just an emulation library
that omits significant functionality, such as the UNIX domain and the socketpair call.
Many older System V sockets emulation libraries also have a bad reputation regarding perfor-
mance and reliability. On the other hand, many System V.3 ports included the original Berke-
ley socket implementation in the kernel.

Other kinds of pipe
Pipes have two main restrictions:

• They are unidirectional: you write to one descriptor, you read from the other. It would be
a nice idea to be able to read from and write to the same descriptor.

• They are anonymous: you don’t open an existing pipe, you create a new one, and only
you and your descendents can use it. It would be nice to be able to use pipes like regular
files.

In fact, you can get all combinations of these properties. We’v e seen regular pipes—the oth-
ers are stream pipes, FIFOs and named stream pipes. We’ll look at them in the following sec-
tions:

* Not all UNIX implementations support UNIX domain sockets. In particular, some System V systems
support only the Internet domain. People with a System V background often place the emphasis on the
word “domain”, and some even refer to UNIX domain sockets as “domain sockets”. As you can see
from the above, this is incorrect.

5 February 2005 02:09



Chapter 12: Kernel dependencies 165

Stream pipes

Most systems allow you to create bidirectional pipes. For some reason, they’re generally
called stream pipes, which is not a good name at all.

• In System V.4, regular pipes are bi-directional, so you don’t need to do anything special.

• In 4.4BSD, the socketpair system call, which we have already seen, creates stream pipes,
so you’d expect regular pipes to be bidirectional in 4.4BSD as well. In fact, before
returning, the library function pipe closes one descriptor in each direction, so 4.4BSD
pipes really are unidirectional. If you want a stream pipe, just use the socketpair sys-
tem call.

• In System V.3 systems with STREAMS, bidirectional pipes are possible too, but things
are more difficult: you have to connect two streams back to back. See UNIX Network
Programming for a discussion of how to do this.

FIFOs

FIFOs are pipes with file names, which allow unrelated processes to communicate with each
other. To create a FIFO, you use the function mkfifo:

#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

This call corresponds exactly to mkdir, except that it creates a FIFO instead of a directory.
BSD implements mkfifo as a system call, while System V.4 implements it as a library func-
tion that calls mknod to do the work. System V.3 systems frequently implemented it as a sys-
tem call. Once you have created a FIFO, you can use it just like a file: typically, one process,
the listener process, opens the FIFO for reading, and one or more open it for writing to the lis-
tener process.

Named stream pipes

Stream pipes are bidirectional, but they don’t normally have names. FIFOs have names, but
they’re usually not bidirectional. To get both of these properties, we need a new kind of con-
nection, a named stream pipe. In 4.4BSD, this can be done by binding a name to a stream
socket — see the man pages for bind for further details. In System V.4, you can create a
named stream pipe with the connld STREAMS module. See Advanced Programming in the
UNIX environment for more details.

System V IPC
System V supplies an alternative form of interprocess communication consisting of three fea-
tures: shared memory, message queues and semaphores. SunOS 4 also supports System V
IPC, but pure BSD systems do not. In the industry there is a significant amount of aversion to
this implementation, which is sometimes called The Three Ugly Sisters.
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System V IPC is overly complicated and sensitive to programming bugs, which are two of the
main reasons why it has not been implemented on other systems. Converting programs writ-
ten for System V IPC to other methods of interprocess communication is non-trivial. If you
have a BSD system with kernel sources, it might be easier to implement Daniel Boulet’s free
software implementation (see Appendix E, Where to get sources).

Shared memory

An alternative form of interprocess communication involves sharing data between processes.
Instead of sending a message, you just write it into a buffer that is also mapped into the
address space of the other process. There are two forms of shared memory that you may
encounter on UNIX systems—System V shared memory and mmap, which is more commonly
used for mapping files to memory. We’ll look at mmap in Chapter 14, File systems, page 232.

System V shared memory is implemented with four system calls:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, int size, int shmflg);
int shmctl (int shmid, int cmd, ... /* struct shmid_ds *buf */);
void *shmat (int shmid, void *shmaddr, int shmflg);
int shmdt (void *shmaddr);

• shmget allocates a shared memory segment or adds the process to the list of processes
sharing the segment. The shared memory segment identifier is conceptually like a file
name or an identifier, but for some reason they are called keys when talking about Sys-
tem V shared memory. It returns a segment identifier, conceptually like a file number.

• shmctl performs control operations on shared memory segments. It can set ownerships
and permissions, retrieve status information, or remove shared memory segments. Like
files, shared memory segments remain on the system until explicitly removed, even if
they are currently not assigned to any process.

• shmat attaches the shared memory segment shmid to the calling process.

• shmdt detaches a shared memory segment from the calling process.

With some limitations, you can use mmap to replace System V shared memory. The limita-
tions are that mmap on non-System V platforms normally maintains separate data pages for
each process, so if you write to a page in one process, other processes will not see the new
data. You need to call msync in order to update the segments used by other processes.
Between the time when you modify the segment and when you call msync, the data is incon-
sistent. msync is not a fast call, so this could also cripple performance.
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Message queues

As if there weren’t enough ways of passing data between processes already, System V IPC
includes message queues. Message queues are rather like FIFOs, but there are two differ-
ences:

• A FIFO transmits a byte stream, but a message queue is record oriented.

• Messages can have different priorities, which determine the sequence in which they are
received, if the receiving process allows them to queue up.

The system calls to handle message queues are analogous to the shared memory calls:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key_t key, int msgflg);
int msgsnd (int msqid, const void *msgp, size_t msgsz, int msgflg);
int msgrcv (int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
int msgctl (int msqid, int cmd, .../* struct msqid_ds *buf */);

• msgget opens an existing queue or creates a new queue.

• msgsnd sends a message.

• msgrcv receives a message.

• msgctl performs control functions on message queues.

Message queues were originally intended to offer fast interprocess communication.
Nowadays they hav e little to offer that a FIFO couldn’t handle. If you run into problems with
message queues, you might prefer to replace them with FIFOs.

Semaphores

One disadvantage with shared memory implementations is that one process doesn’t know
when another process has done something. This can have a number of consequences:

• Two processes may modify the same area at the same time.

• One process may be waiting for the other process to do something, and needs to know
when it has finished.

There are two possible solutions: send a signal, or use semaphores.

A semaphore is a means of voluntary process synchronization, similar to advisory locking. To
use the facility, a process requests access to the semaphore. If access is currently not possible,
the process blocks until access is permitted. Unlike locking, semaphores allow more than one
process access to the semaphore at any one point. They do this by maintaining a counter, a
small positive integer, in the semaphore. When a process accesses the semaphore, it decre-
ments the counter. If the value of the counter is still non-negative, the process has access, oth-
erwise it is blocked. This could be used to gain access to a limited number of resources.
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System V semaphores look superficially similar to System V shared memory. There are three
functions:

int semctl (int semid, int semnum, int cmd, ... /* union semun arg */);
int semget (key_t key, int nsems, int semflg);
int semop (int semid, struct sembuf *sops, size_t nsops);

The implementation is less than perfect. In particular, it is overly complex, and it almost
encourages deadlocks, situations where no process can continue:

• Instead of a single counter, a System V semaphore declares an array of counters. The
size of the array is determined by the nsems parameter of the semget system call.

• It takes two calls (semget and semctl) to create and initialize a semaphore. Theoreti-
cally, this creates an opportunity for another process to come and initialize the sema-
phore differently.

• It’s possible for semaphores to remain locked after a process ends, which means that a
reboot is necessary to unlock the semaphore again. A flag is provided to specify that a
semaphore should be removed on exit, but you can’t rely upon it completely.

• The implementation is not very fast.

Miscellaneous system functionality
The rest of this chapter describes miscellaneous system calls that can occasionally cause prob-
lems when porting.

exec
exec is one of the original system calls at the heart of the UNIX system, so it may come as a
surprise to discover that exec is no longer a system call on modern systems—instead, it is
implemented as a library function in terms of new system calls such as execve. Even the
Seventh Edition man pages stated

Plain exec is obsoleted by exece, but remains for historical reasons.

Nowadays, there are a large number of alternatives. Your system probably has most of the
following calls:

#include <unistd.h>
extern char **environ;

int exec (char *path, char *argv []);
int exece (char *path, char *argv [], char *envp []);
int execl (char *path, char *arg, ..., NULL);
int execle (char *path, char *arg, ..., NULL, char *envp []);
int execlp (char *file, char *arg, ..., NULL);
int execlpe (char *file, char *arg, ..., NULL, char *envp []);
int exect (char *path, char *argv [], char *envp []);
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int execv (char *path, char *argv []);
int execve (char *path, char *argv [], char *envp []);
int execvp (char *file, char *argv []);
int execvpe (char *file, char *argv [], char *envp []);

All these functions do exactly the same thing: they replace the process image with a process
image from the absolute executable whose file name is specified in the first argument (path or
file). They differ only in the manner in which they supply the parameters:

• The parameter path specifies an absolute pathname. If this file does not exist, the call
fails.

• Alternatively, the parameter file specifies a file to be searched via the PATH environ-
ment variable, the way the shell does when a file name is specified.

• The parameter argv is a pointer to a NULL terminated list of parameters.

• Alternatively, you can place the arguments, including the terminating NULL, in the call as
a series of args.

• If the parameter envp is specified, it is a pointer to a NULL-terminated list of environment
variables. This is typically used when the child process should be given a different envi-
ronment from the parent process.

• If envp is not specified, the environment variables are taken from the parent’s environ-
ment (via the global pointer environ).

One further function deserves mention: exect, which is supplied only in newer BSD systems,
takes the same parameters as execve, but enables program tracing facilities.

The total storage available for the argument list and the enviroment varies from system to sys-
tem. System V traditionally has only 5120 characters. POSIX.1 requires at least 20480 char-
acters, and this is the standard value for newer BSD systems. Many Makefiles take advantage
of these large parameter lists, and frequently a package fails to build under System V because
the parameter lists are too long: you get the message

make: execve: /bin/sh: Arg list too long

We looked at what we can do to solve these problems in Chapter 5, Building the package,
page 74.

getrlimit and setrlimit
The Seventh Edition made a number of arbitrary choices about kernel limits. For example,
each process was allowed to have 50 files open at any one time. In the course of time, a num-
ber of these kernel limits were made configurable, and some systems allowed the process to
modify them directly, up to a “hard” limit. SunOS, BSD and System V.4 supply the system
calls getrlimit and setrlimit in order to manipulate this configuration information:

#include <sys/time.h>
#include <sys/resource.h>
struct rlimit
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{
int rlim_cur; /* current (soft) limit */
int rlim_max; /* hard limit */
};

int getrlimit (int resource, struct rlimit *rlp);
int setrlimit (int resource, struct rlimit *rlp);

The rlimit structure defines two values for each resource, the current value and the maxi-
mum value. getrlimit returns this information, setrlimit sets a new current value. Table
12-1 shows which limits can be set:

Table 12−1: getrlimit and setrlimit resources

resource System Description

RLIMIT_CORE all The maximum size, in bytes, of a core image file.

RLIMIT_CPU all The maximum amount of CPU time that a process may
consume.

RLIMIT_DATA all The maximum size, in bytes, of the process data segment.

RLIMIT_FSIZE all The largest size, in bytes, that any file may attain.

RLIMIT_MEMLOCK 4.4BSD The maximum size, in bytes, which a process may lock
into memory using the mlock function.

RLIMIT_NOFILE all The maximum number of files that a process may open at
one time. This is also one more than the highest file num-
ber that the process may use.

RLIMIT_NPROC 4.4BSD The maximum number of simultaneous processes for the
current user id.

RLIMIT_RSS 4.4BSD,
SunOS 4

The maximum size, in bytes, that the resident set of a pro-
cesses may attain. This limits the amount of physical
memory that a process can occupy.

RLIMIT_STACK all The maximum size, in bytes, that the stack segment of a
processes may attain.

RLIMIT_VMEM System V.4 The maximum size, in bytes, that the mapped address
space of a processes may attain.

If your system doesn’t hav e these functions, there’s not much you can do except guess. In
some cases, header files will contain similar information declared as constants, but it’s not a
very satisfactory alternative.
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Process groups
Where other operating systems use a single program to perform an operation, UNIX fre-
quently uses a group of cooperating processes. It’s useful to be able to define such a group,
particularly when they access terminals. Advanced Programming in the UNIX environment,
by Richard Stevens, describes all you will want to know about process groups. Here, we’ll
look at some minor differences in implementations.

setpgid

setpgid adds a process to a process group:

#include <unistd.h>

int setpgid (pid_t pid, pid_t pgrp);

pid is the process ID of the process that is to be added to the process group, and pgrp is the
process group to which it should be added. It returns 0 on success and -1 with an error code
in errno on failure.

Normally you will see setpgid used to add the calling process to a group; this can be done
by setting pid to 0. System V versions also allow pgrp to be 0: this specifies that the process
id should be the same as pid, and that this process will become a process group leader.

setpgrp

setpgrp is obsolescent. There are two different implementations, both of which duplicate
functionality supplied by other functions:

• In more modern BSD systems, it is the same thing as setpgid:

int setpgrp (pid_t pid, pid_t pgrp); BSD versions

• In System V, it creates a new process group with the calling process as group leader, and
adds the calling process to the group. It also releases the controlling terminal of the call-
ing process. This is the same thing as setsid:

int setpgrp (); System V versions

If you run into trouble with this function, it’s best to replace it with setpgid or setsid,
depending on the functionality that was intended.

setsid

setsid creates a new process group with the calling process as group leader, and adds the
calling process to the group. It also releases the calling process from its controlling terminal:

#include <unistd.h>

int setsid ();
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Real and effective user IDs
Occasionally the UNIX security system causes unintended problems: a trusted program may
require access to facilities to which the user should not have unlimited access. For example,
the program ps requires access to /dev/kmem, kernel memory, which is normally accessible
only to the super user. Serial communication programs such as uucp require access to the
serial ports, but in order to avoid conflicts, only trusted users have access to the ports.

UNIX solves this problem by allowing the programs always to run as a specific user or group.
If you execute a program that has the setuid bit set in the file permissions, it runs as if its
owner had execed it, no matter who really started it. Similarly, the setgid bit causes the pro-
gram to run as if it had been executed in the group to which the file belongs. These user and
group ids are called effective user ID and effective group ID, and they are the only permissions
that are relevant when a process accesses a file.

Similar considerations apply to group IDs. In the following discussion, we’ll consider user
IDs, but unless mentioned otherwise, everything I say about user IDs also applies to group
IDs.

A number of subtle problems arise from this scheme. One of the most obvious ones is that
programs frequently also need to be able to access your files. There’s no guarantee that this
will always work. For example, uucp needs to be setuid to user uucp in order to access the
communication ports, but it also frequently needs to transfer data to your home directory. If
your permissions are set so that uucp can’t access your home directory, it will not be able to
perform the transfer. This is obviously not the intention: somehow, uucp needs access both to
the serial ports and to your files.

This means that we need to maintain at least two user IDs, the effective user ID and the real
user ID. Modern systems also supply a saved set user ID. On System V.4, it’s a configuration
option (set the configuration constant _POSIX_SAVED_IDS). BSD uses the saved set user ID
in a different way from System V, as we will see below.

The system manipulates user IDs in the following ways:

• If you execute a program that is not setuid, it sets all IDs to the effective user ID of the
process that executes it.

• If you execute a program that has the setuid permission set, it sets the effective user ID to
the owner of the program, and the real user ID to the effective ID of the process that
executes it. If there is a saved set user ID, it also sets it to the owner of the program.

• At run time you can change between IDs with the system call setuid. There are also a
number of alternative calls. We’ll look at them in the following sections.

setuid

setuid changes the effective user ID. If your current effective user ID is root, you can set it
to any valid user ID. There, unfortunately, the similarity ends:

• In systems without a saved set user ID, including SunOS 4 and System V.3, setuid sets
the effective user ID and the real user ID if the current effective user ID is root, otherwise
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it sets only the effective user ID. The function call succeeds if the argument to setuid is
the real user ID or the effective user ID, or if the effective user ID is root. Once you have
changed away from the old effective user ID and root, there is no way to change back.

• On System V systems with saved set user ID, setuid sets the effective user ID and the
real user ID if the current effective user ID is root, otherwise it sets only the effective
user ID. It does not change the saved set user ID. The function call succeeds if the argu-
ment to setuid is the real user ID, the effective user ID, or the saved set user ID, or if
the effective user ID is root. This means that you can switch back and forth between the
ID of the program owner and the ID of the process which started it.

• On BSD systems with saved set user ID, setuid sets the real, effective, and saved set
user IDs. The function call succeeds if the argument to setuid is the real user ID, or if
the effective user ID is root. Unlike System V.4, non-root users cannot use setuid to set
the user ID to the saved set user ID. The saved set user ID is of no use to BSD
setuid—instead, BSD systems use seteuid, which sets only the effective user ID to
either the real user ID or the saved set user ID.

setreuid

BSD versions since 4.2BSD have the system call setreuid, which takes two parameters:

int setreuid (int ruid, int euid);

You can use it to swap the effective and real user IDs, so you don’t really need a saved set user
ID. For non-privileged users, ruid and euid can be either the current real user ID or the cur-
rent effective user ID, or -1 to indicate no change. This function was needed in BSD up to
and including 4.3BSD, since these versions did not support the concept of a saved set user ID.
On non-BSD systems only, you can replace this function with setuid if your system supports
saved set user IDs.

seteuid

As we noted above, BSD setuid cannot change to the saved set user ID. The BSD solution
to this problem, which has been proposed for adoption in a new revision of POSIX.1, is the
function seteuid. It sets the effective user ID to euid if euid corresponds either to the real
user ID or the saved set user ID. Unlike setuid, it sets only the effective user ID.

setruid

In addition to seteuid, BSD systems provide the call setruid, which sets the real user ID to
the effective or real user ID. setruid is considered non-portable. Future BSD releases plan
to drop it.
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Comparison of user ID calls

User IDs are much more complicated than they should be. In fact, there are only two things
you’ll want to do, and for non-root users they work only with programs which have setuid
permissions: change from the initial effective user ID to the real user ID, and change back
again. Changing from effective to real user ID is simple: in all systems, you can use the
setuid system call, though in 4.3BSD and SunOS 4 this will mean that you can’t change
back. In these systems, it’s better to use code like

int euid = geteuid (); /* get current effective user ID */
int ruid = getuid (); /* and real user ID */
setreuid (euid, ruid); /* and swap them */

Changing back again is more complicated:

• On older systems, including XENIX and System V.3, and on System V.4 systems without
_POSIX_SAVED_IDS, you can’t do it. For the older systems, about the only workaround
is not to change away from the initial effective user ID—you might be able to spawn a
process which does the necessary work under the real user ID.

• On BSD systems up to and including 4.3BSD, and under SunOS 4, you can do it only if
you changed with setreuid, as in the example above. In this case, you just need to con-
tinue with

setreuid (ruid, euid);

• On System V.4 systems with _POSIX_SAVED_IDS, use setuid (ssuid), where ssuid
is the saved set user ID. You can get the value of ssuid by calling geteuid before
changing the initial effective user ID, since they’re the same at program start.

• On BSD systems which support saved set user IDs, use seteuid (ssuid). As with
System V.4, you can get the value of ssuid by calling geteuid before changing the ini-
tial effective user ID.

vfork
vfork was introduced in 3BSD as a more efficient version of fork: in those days, fork
copied each data area page of the parent process for the child process, which could take a con-
siderable time. Typically, the first thing a child does is to call exec to run a new program,
which discards the data pages, so this was effectively wasted time. vfork modified this be-
haviour so that the pages were shared and not copied.

This is inherently very dangerous: very frequently the parent waits until the child has done
something before continuing. During this time, the child can modify the parent’s data, since it
is shared. More modern techniques, such as copy on write*, hav e eliminated the need for this
function. You should be able to replace it with fork (the semantics are identical). Unfortu-
nately, some obscene programs rely on the fact that they can manipulate the parent’s data

* With copy on write, the data pages are set to be write-protected. The first write causes an interrupt,
effectively a bus error, which the system intercepts. The system makes a copy of the single page and
resets write protection for both the original and the copy, allowing the write to proceed.
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before the parent continues. These programs need to be fixed.

wait and friends
wait has been in UNIX as long as anybody can remember:

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait (int *status);

Unfortunately, various flavours define the value of the status return differently. This is a cos-
metic difference, not a real difference: the status information consists of a number of bit fields
that depend on the kind of status:

• The low-order 7 bits contain the number of the signal that terminated the process, or 0 if
the process called exit.

• The bit 0x80 is set if a core dump was taken.

• The next 8 bits are the return code if the process called exit.

If the process is stopped (if it can be restarted), the low-order 8 bits are set to 127 (0x7f), and
the next byte contains the number of the signal that stopped the process.

This information is the same on all versions of UNIX, but there is no agreement on how to
represent this information. Older BSD systems defined a union to represent it:

union __wait
{
int w_status; /* status as int */
struct
{
unsigned short w_Termsig:7; /* termination signal */
unsigned short w_Coredump:1; /* core dump indicator */
unsigned short w_Retcode:8; /* exit code if w_termsig==0 */
}

w_T;
struct
{
unsigned short w_Stopval:8; /* == W_STOPPED if stopped */
unsigned short w_Stopsig:8; /* signal that stopped us */
}
w_S;

};

Modern systems define macros:

• WIFEXITED (status) is true if the process terminated via a call to exit. If this is true,
WEXITSTATUS (status) returns the low order 8 bits of the process’ exit value.

• WIFSIGNALED (status) is true if the process was terminated by receiving a signal. If
this is true, the following macros apply:
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− WTERMSIG (status) evaluates to the number of the signal that caused the termina-
tion of the process.

− WCOREDUMP (status) is true if a core dump was created.

• WIFSTOPPED (status) is true if the process is stopped and can be restarted. This
macro can be true only if the waitpid call specified the WUNTRACED option or if the
child process is being traced. If this is true, WSTOPSIG (status) returns the number of
the signal that caused the process to stop.

Some systems offer both of these options, sometimes incompletely. For example, SunOS 4
defines w_Coredump in the union __wait, but does not define the corresponding WCORE-
DUMP macro.

These varying differences cause problems out of all proportion to the importance of the infor-
mation contained. In particular, the newer macros do not allow you to change the status, you
can only read it. Some programs, for example BSD make, modify the status. This makes it
difficult to port it to System V or another system which does not understand union wait.

waitpid
waitpid is a variant of wait that waits for a specific process to terminate. It is part of all
modern UNIX implementations:

#include <sys/wait.h>

pid_t waitpid (pid_t wpid, int *status, int options);

waitpid waits for process pid to terminate. Its behaviour is governed by a number of bit-
mapped options:

• Set WNOHANG to specify to return immediately, even if no status is available. If the status
is not available, the functions return the process number 0. Not all systems support this
behaviour.

• Specify WUNTRACED if you want the status of stopped processes as well as processes that
have terminated. Some systems do not return complete status information for stopped
processes.

• Under System V.4, use WCONTINUED to report the status of any process that has contin-
ued (in other words, one that is no longer stopped) since the last status report.

• Also under System V.4 you can set the option WNOWAIT to specify that the process should
not terminate (it remains a zombie). This means that you can call waitpid again and get
the same information.

The value of status is the same as with wait—see the previous section for further details.

If you run into problems with waitpid, it may be a bug: some versions of System V.3,
including most current versions of SCO UNIX, return a process ID if a process is waiting, and
an error number such as ECHILD (10) if nothing is waiting, so if your freshly ported program
keeps reporting the demise of process 10, this could be the problem. It’s almost impossible to
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work around this bug — about the only thing you can do is to use some other system call.

wait3 and wait4
Newer BSD implementations supply the functions wait3 and wait4 as alternatives to wait.
They correspond to wait and waitpid respectively, but return an additional parameter
rusage with accounting information for the terminated process:

pid_t wait3 (int *status, int options, struct rusage *rusage);
pid_t wait4 (pid_t wpid, int *status, int options, struct rusage *rusage);

Not all implementations return usage information to rusage when the process is stopped (and
not terminated). The definition of struct rusage is implementation-dependent and defined
in sys/resource.h. See the file sys/sys/resource.h in the 4.4BSD Lite distribution for further
details.
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