
1
Introduction

One of the features that made UNIX successful was the ease with which it could be imple-
mented on new architectures. This advantage has its down side, which is very evident when
you compare UNIX with a single-platform operating system such as MS-DOS: since UNIX
runs on so many different architectures, it is not possible to write a program, distribute the
binaries, and expect them to run on any machine. Instead, programs need to be distributed in
source form, and installation involves compiling the programs for the target hardware. In
many cases, getting the software to run may be significantly more than just typing make.

What is porting?
It’s difficult to make a clear distinction between porting and building. In this book, we’ll use
three terms:

• building a package is the planned process of creating an installable software package.
This is essentially the content of Chapter 5, Building the package.

• installation is the planned process of putting an installable software package where users
can use it. This is what we talk about in Chapter 9, Installation.

• Some people use the term porting to describe a software installation requiring undocu-
mented changes to adapt it to a new environment, not including the process of configura-
tion if this is intended to be part of the build process. Although this is a useful definition,
it contains an element of uncertainty: when you start, you don’t know whether this is
going to be a build or a port. It’s easier to call the whole process porting, whether you
just have to perform a simple build or complicated modifications to the source. That’s
the way we’ll use the term in this book.

The effort required to port a package can vary considerably. If you are running a SparcStation
and get some software developed specifically for SparcStations, and the software does not
offer much in the way of configuration options, you probably really can get it to run by read-
ing the sources onto disk, and typing make and make install. This is the exception, how-
ev er, not the rule. Even with a SparcStation, you might find that the package is written for a
different release of the operating system, and that this fact requires significant modifications.
A more typical port might include getting the software, configuring the package, building the

1

5 February 2005 02:09

2

package, formatting and printing the documentation, testing the results and installing files in
the destination directories.

How long does it take?
It is very difficult to gauge the length of time a port will take to complete. If a port takes a
long time, it’s not usually because of the speed of the machine you use: few packages take
more than a few hours to compile on a fast workstation. Even the complete X11R6 window-
ing system takes only about 4 hours on a 66 MHz Intel 486 PC.

The real time-consumers are the bugs you might encounter on the way: if you’re unlucky, you
can run into big trouble, and you may find yourself getting to know the package you’re port-
ing much more intimately than you wish, or even having to find and fix bugs.

Probably the easiest kind of program to port is free software, that is to say, software that is
freely redistributable. As a result of the ease of redistribution, it tends to be ported more fre-
quently and to more platforms, so that configuration bugs get ironed out more evenly than in
commercial software. Porting a product like bison* from the Free Software Foundation is
usually just a matter of minutes:

$ configure
checking how to run the C preprocessor
... messages from configure
$ make
... messages from make
$ make install

On an Intel 486/66, configure runs for 15 seconds, make runs for about 85 seconds, and make
install runs for about 5 seconds—all in all, less than two minutes. If ev erything were that
simple, nobody would need this book.

On the other hand, this simple view omits a point or two. bison comes with typeset documen-
tation. Like most products of the Free Software Foundation, it is written in texinfo format,
which relies on TEX for formatting. It doesn’t get formatted automatically. In fact, if you
look for the target in the Makefile, you’ll find that there isn’t one: the Makefile ignores printed
documentation. I consider this a bug in the Makefile. Never mind, it’s easy enough to do it
manually:

$ tex bison.texinfo
tex: not found

This is a fairly typical occurrence in porting: in order to port a package, you first need to port
three other, more complicated packages. In fact, most ports of bison are made in order to
compile some other product, such as the GNU C compiler. In order to get our documentation
printed, we first need to port TEX, which is appropriately depicted in its own printed documen-
tation as a shaggy lion. This is definitely a non-trivial port: TEX consists of dozens of differ-
ent parts, the source tree varies greatly depending on where you get it from, the whole thing is
written in Web, Donald Knuth’s own private dialect of Pascal, and once you get it to run you

* bison is a parser generator, compatible with yacc.

5 February 2005 02:09

Chapter 1: Introduction 3

discover that the output (deliberately) does not match any printer available, and that you need
a so-called printer driver to output it to your favourite laser printer—yet another port.

Under these circumstances, it wouldn’t be surprising if you give up and rely on the online
documentation supplied with bison. bison has two different online reference documents: a
man page and something called info, a cross-linked documentation reader from the Free Soft-
ware Foundation. The man page is two pages long, the info runs to over 200K in five files.
There are no prizes for guessing where the real information is. But how do you run info?
Simple: you port the GNU texinfo package. This time it’s not quite as bad as porting TEX, but
it’s still more difficult than porting bison.

This scenario is fairly typical: you set out to port something simple, and everything seems to
be fine, and then you find that a minor part of the port can really take up lots of time. Typi-
cally, this is the point where most people give up and make do with what they hav e achieved.
This book is intended to help you go the whole distance.

Why we need to port
There are three main reasons why a port might be more than a simple recompilation:

• Different operating system. Depending on what features the operating system offers, the
program may need to be modified. For example, when porting a program from UNIX to
DOS, I will definitely have to do something about file naming conventions. If I port a
System V.4 program to BSD I may find I need to replace STREAMS calls with sockets
calls.

• Different hardware. This is obvious enough with something like a display driver. If the
driver you have is designed for a Sun workstation and you’re porting it to a PC, you will
be involved in some serious rewriting. Even in more mundane circumstances, things like
the kind of CPU involved might influence the program design.

• Local choices. These includes installation pathnames and cooperation with other
installed software. For example, if I use the emacs editor, I may choose to use the etags
program to cross-reference my source files; if I use vi, I would probably prefer to use
ctags. Depending on the C compiler, I may need to use different compilation options. In
many cases, this seems to be similar to the choice of operating system, but there is a sig-
nificant difference: in general, changing your kernel means changing your operating sys-
tem. You can change the C compiler or even the system library without changing the
basic system.

Unix flavours
UNIX spent the first ten years of its existence as the object of computer science research.
Developed in Bell Labs (part of AT&T), it was significantly extended in the University of Cal-
ifornia at Berkeley (UCB), which started releasing significant updates, the so-called Berkeley
Software Distribution (BSD) in 1977. By the time AT&T decided to commercialize UNIX
with System III in the early 80’s, the fourth BSD was already available, and both System III
and System V drew heavily from it. Nevertheless, the differences were significant, and

5 February 2005 02:09

4

despite the advent of System V.4, which basically just added all features available in any
UNIX dialect into one package, the differences remain. A good overview of the relationship
between the Unixes can be found on page 5 of The Design and the Implementation of the
4.3BSD UNIX Operating System by Sam Leffler, Kirk McKusick, Mike Karels and John
Quarterman. In this book I will concentrate on the differences that can be of importance when
porting from one flavour to another.

Research UNIX

Research UNIX is the original UNIX that has been developed inside Bell Labs since 1969.
The last version that became widely available was the Seventh Edition, in 1978. This version
can be considered the granddaddy of them all*, and is also frequently called Version 7. In this
book, I’ll make frequent references to this version. Work on Research UNIX continued until
1993, by which time it had reached the Tenth Edition. It’s unlikely that you’ll have much to
do with it directly, but occasionally ideas from Research UNIX trickle into other flavours.

Berkeley UNIX (BSD)

The first Berkeley Software Distribution was derived from the 6th edition in 1977 and ran on
PDP-11s only. 2BSD was the last PDP-11 version: 2.11BSD is still available for PDP-11s, if
you have a need (and a UNIX source licence). 3BSD was derived from 2BSD and the 7th edi-
tion — via a short-lived version called 32V—in 1979. Since then, BSD has evolved relatively
free of outside borrowings. With the closure of the Computer Science Research Group in
Berkeley in autumn 1993 and the release of 4.4BSD in early 1994, the original BSD line has
died out, but the public release of the complete sources will ensure the continued availability
of Berkeley UNIX for a long time to come.

Current BSD systems include BSD/OS (formerly called BSD/386), 386BSD, NetBSD and
FreeBSD. These were all originally ports of the BSD Net-2 tape, which was released in 1991,
to the Intel 386 architecture. These ports are interesting because they are almost pure BSD
and contain no AT&T licensed code. BSD/OS is a commercial system that costs money and
supplies support; the other three are available free of charge. It is not clear how long all three
free versions will continue to exist side-by-side. 386BSD may already be dead, and the differ-
ence between NetBSD and FreeBSD is difficult to recognize.

At the time of writing, current versions of BSD/OS and FreeBSD are based on 4.4BSD, and
NetBSD is planning to follow suit.

XENIX

XENIX is a version of UNIX developed by Microsoft for Intel architectures in the early 80s.
It was based mainly on the System III versions available at the time, though some ideas from
other versions were included and a significant amount of work was put into making it an eas-
ier system to live with. Not much effort was put into making it compatible with other versions
of UNIX, however, and so you can run into a few surprises with XENIX. SCO still markets it,

* In fact, a number of UNIX flavours, including System V and BSD, can trace their origins back to the
Sixth Edition of 1976, but they all benefitted from modifications made in the Seventh Edition.

5 February 2005 02:09

Chapter 1: Introduction 5

but dev elopment appears to have stopped about 1989.

System V

System V was derived from the 6th and 7th editions via System III, with a certain amount bor-
rowed from 4.0BSD. It has become the standard commercial UNIX, and is currently the only
flavour allowed to bear the UNIX trademark. It has evolved significantly since its introduc-
tion in 1982, with borrowings from Research UNIX and BSD at several points along the way.
Currently available versions are V.3 (SCO Open Desktop) and V.4 (almost everybody else).

System V.3 lacked a number of features available in other Unixes, with the result that almost
all V.3 ports have borrowed significantly from other versions, mainly 4.2BSD. The result is
that you can’t really be sure what you have with System V.3 — you need to consult the docu-
mentation for more information. In particular, vanilla System V.3 supports only the original
UNIX file system, with file names length limited to 14 characters and with no symbolic links.
It also does not have a standard data communications interface, though both BSD sockets and
System V STREAMS have been ported to it.

System V.3.2 is, as its name suggests, a version of System V.3. This version includes compati-
bility with XENIX system calls. As we saw above, XENIX went its own way for some time,
resulting in incompatibilities with System V. These XENIX features should be supported by
the kernel from System V.3.2 onwards. SCO UNIX is version V.3.2, and includes STREAMS
support.

System V.4 is the current version of System V. Previous versions of System V were often criti-
cized for lacking features. This cannot be said of System V.4: it incorporates System V.3.2
(which already incorporates XENIX), 4.3BSD, and SunOS. The result is an enormous system
which has three different ways to do many things. It also still has significant bugs.

Developing software under System V.4 is an interesting experience. Since the semantics of
System V.3 and BSD differ in some areas, System V.4 supplies two separate sets of libraries,
one with a System V personality and one with a BSD personality. There are no prizes for
guessing which is more reliable: unless you really need to, you should use the System V
libraries. When we discuss kernel and library differences in Part 2 of the book, the statement
“This feature is supported by System V.4” will mean that the System V library interface sup-
ports it. The statement “This feature is supported by BSD” also implies that it should be sup-
ported by the BSD library interface of System V.4.

OSF/1

OSF/1 is a comparatively recent development in the UNIX market. It was dev eloped by the
Open Systems Foundation, an industry consortium formed as a result of dissatisfaction with
AT&T’s policy on UNIX. The kernel is based on CMU’s Mach operating system, a so-called
microkernel*. The original Mach operating system was styled on Berkeley UNIX. OSF/1
attempts to offer the same functionality as System V, though inevitably some incompatibilities

* A microkernel operating system is an operating system that leaves significant operating system func-
tionality to external components, usually processes. For example, device drivers and file systems are fre-
quently implemented as separate processes. It does not imply that the complete system is any smaller or
less functional than the monolithic UNIX kernel.

5 February 2005 02:09

6

exist.

POSIX.1

POSIX is a series of emerging IEEE standards applying to operating systems, utilities, and
programming languages. The relevant standard for operating systems is IEEE 1003.1-1990,
commonly called POSIX.1. It has also been adopted by the International Standards Organiza-
tion (ISO) as standard ISO/IEC 9945.1:1990.

POSIX.1 defines the interface between application programs and the operating system, and
makes no demands on the operating system except that it should supply the POSIX.1 inter-
face. POSIX.1 looks very much like a subset of UNIX. In fact, most users wouldn’t notice
the difference. This makes it easy for UNIX operating systems to supply a POSIX.1 interface.
Other operating systems might need much more modification to become POSIX.1 compliant.
From a UNIX viewpoint, POSIX.1 does not supply as rich a set of functions as any of the
commercially available UNIX flavours, so programming to POSIX specifications can feel
somewhat restrictive. This matter is discussed in the POSIX Programmer’s Guide by Donald
Lewine.

Despite these slight disadvantages, POSIX has a great influence on operating system develop-
ment: all modern flavours of UNIX claim to be POSIX-compliant, although the degree of suc-
cess varies somewhat, and other systems are also attempting to supply a POSIX.1 interface.
The trend is clear: future UNIX-like operating systems will be POSIX-compliant, and if you
stick to POSIX features, your porting problems will be over. And I have a supply of bridges
for sale, first come, first served.

Other flavours

It doesn’t take much effort to add a new feature to a kernel, and people do it all the time. The
result is a proliferation of systems that mix various features of the leading products and addi-
tional features of their own. On top of that, the release of kernel sources to the net has caused
a proliferation of “free” operating systems. Systems that you might well run into include:

• AIX, IBM’s name for its UNIX versions. Current versions are based on System V.3, but
IBM has stated an intent to migrate to OSF/1 (IBM is a leading member of the OSF).
Compared to System V, it has a large number of extensions, some of which can cause
significant pain to the unwary.

• HP-UX, Hewlett Packard’s UNIX system. It is based on System V.3, but contains a large
number of so-called BSD extensions. Within HP, it is considered to be about 80% BSD-
compliant.

• Linux, a UNIX clone for the Intel 386 architecture written by Linus Torvalds, a student in
Helsinki. It has absolutely no direct connection with traditional UNIX flavours, which
gives it the unique advantage amongst free UNIXes of not being a potential subject for
litigation. Apart from that, it has a vaguely System V-like feeling about it. If you are
porting to Linux, you should definitely subscribe to the very active network news groups
(comp.os.linux.*).

5 February 2005 02:09

Chapter 1: Introduction 7

• SunOS is the generic name of Sun Microsystems’ operating systems. The original
SunOS was derived from 4.2BSD and 4.3BSD, and until release 4.1 it was predominantly
BSD-based with a significant System V influence. Starting with version 5.0, it is a some-
what modified version of System V.4. These later versions are frequently referred to as
Solaris, though this term properly applies to the complete system environment, including
windowing system (OpenWindows), development tools and such, and does not apply
only to the System V based versions. Solaris 1.x includes the BSD-based SunOS 4.1 as
its kernel; Solaris 2.x includes the System V.4-based SunOS 5.x as its kernel.

• Ultrix is DEC’s port of 4.1BSD and 4.2BSD to the VAX and MIPS-based workstations.
It is now obsolete and has been replaced by OSF/1.

I would have liked to go into more detail about these versions of UNIX, but doing so would
have increased the size of the book significantly, and even then it wouldn’t be possible to
guarantee the accuracy: most systems add functionality in the course of their evolution, and
information that is valid for one release may not apply to an earlier or a later release. As a
result, I’ve made a compromise: nearly all UNIX features were introduced either in BSD or
System V, so I will distinguish primarily between these two. Where significant differences
exist in other operating system—SunOS 4 is a good example — I will discuss them separately.

Where does this leave you with, say, NonStop UX version B30? NonStop UX version B is a
version of UNIX System V.4 that runs on Tandem’s Integrity series of fault-tolerant MIPS-
based UNIX systems. It includes some additional functionality to manipulate the hardware,
and some of the header files differ from the standard System V.4. In addition, it includes a
minimal carry-over of BSDisms from the System V.3 version. Obviously, you can start by
treating it as an implementation of System V.4, but occasionally you will find things that don’t
quite seem to fit in. Since it’s a MIPS-based system, you might try to consider it to be like
SGI’s IRIX operating system version 5, which is System V.4 for SGI’s MIPS-based hardware.
Indeed, most IRIX 5.x binaries will also run unchanged on NonStop UX version B, but you
will notice significant differences when you try to port packages that already run on IRIX 5.x.
These differences are typical of a port to just about every real-life system. There are very few
pure System V.4 or pure BSD systems out there—everybody has added something to their
port. Ultimately, you will need to examine each individual problem as it occurs. Here is a
strategy you can use to untangle most problems on UNIX systems:

• Interpret the error messages to figure out what feature or function call is causing the
problem. Typically, the error message will come from the compiler and will point to a
specific line in a specific file.

• Look up the feature or call in this book. Use the description to figure out what the origi-
nal programmer intended it to do.

• Figure out how to achieve the same effect on your own system. Sometimes, I recom-
mend a change which you can make and try the program again. If you’re not sure how
your system works, you can probably find a manual page for the feature or call, and this
book will help you interpret it.

5 February 2005 02:09

8

• Reconfigure or change the code as necessary, then try building again.

Where you fit in
The effort involved in porting software depends a lot on the package and the way it is main-
tained. It doesn’t make much difference whether the software is subject to a commercial
license or is freely available on the net: the people who write and maintain it can never hope
to port it to more than a fraction of the platforms available. The result is that there will always
be problems that they won’t know about. There is also a very good chance that the well-
known and well-used package you are about to port may never hav e been ported quite that
way before. This can have some important consequences:

• You may run into bugs that nobody has ever seen before in a well-known and well-used
package.

• The package that you ported in ten minutes last year and have been using ever since has
been updated, and now you can’t get the @&*(&@$(to compile or run.

This also means that if you do run into problems porting a package, your feedback is impor-
tant, whether or not you can supply a fix. If you do supply a fix, it should fit into the package
structure so that it can be included in a subsequent release.

To reiterate: it makes very little difference here whether we are talking about free or licensed
software. The players involved are different, but the problems are not. In many ways, free
software is easier, since there are fewer restrictions in talking about it (if you run into prob-
lems porting System V.4, you can’t just send the code out on the net and ask for suggestions),
and there’s a chance that more people will have ported it to more platforms already. Apart
from that, everything stays the same.

But can I do it?
Of course, maybe your concern is whether you can do it at all. If you’ve nev er ported a pro-
gram before, you might think that this is altogether too difficult, that you’ll spend days and
weeks of effort and confusion and in the end give it up because you don’t understand what is
going on, and every time you solve a problem, two new ones spring up in its place.

I’d like to say “Don’t worry, with this book nothing can go wrong”, but unfortunately things
aren’t always like that. On the other hand, it’s easy too overestimate the things that can go
wrong, or how difficult a port might be. Let’s look at the bad news first: in most cases, you
can assume that the worst thing that can happen when you try to port a package is that it won’t
work, but in some unfortunate cases you may cause your system to panic, especially if you are
porting kernel software such as device drivers. In addition, if you are porting system utilities,
and they don’t work, you could find that you can no longer perform such essential system
functions as starting or shutting down the system. These problems don’t occur very often,
though, and they should not cause any lasting damage if you religiously back up your system
(you do perform regular backups, don’t you?).

5 February 2005 02:09

Chapter 1: Introduction 9

Apart from such possible dangers, there is very little that can go wrong. If you are building a
package that has already had been ported to your platform, you should not run into any prob-
lems that this book can’t help you solve, even if you have negligible background in program-
ming and none in porting.

How to use this book
The way you approach porting depends on how difficult it is. If it’s a straightforward busi-
ness, something that has been done dozens of times before, like our example of porting bison
above, it’s just a matter of following the individual steps. This is our approach in the first part
of this book, where we look at the following topics:

• Getting the software. You might get the sources on tape, on CD-ROM, or by copying
them from the Internet. Getting them from this format into a format you can use to com-
pile them may not be as simple as you think. We’ll look at this subject in Chapter 2,
Unpacking the goodies and Chapter 3, Care and feeding of source trees.

• Configure the package for building. Although UNIX is a relatively well defined operat-
ing system, some features are less well defined. For example, there are a number of dif-
ferent ways to perform interprocess communication. Many packages contain alternative
code for a number of operating systems, but you still need to choose the correct alterna-
tive. People often underestimate this step: it seems simple enough, but in many cases it
can be more work than all the rest put together.

Configuration is a complicated subject, and various methods have evolved. In Chapter 4,
Package configuration, we’ll look at manual configuration, shell scripts, and imake, the
X11 configuration solution.

• Build the package. This is what most people understand by porting. We’ll look at prob-
lems running make in Chapter 5, Building the package, and problems running the C com-
piler in Chapter 6, Running the compiler.

• Format and print the documentation, which we’ll investigate in Chapter 7, Documenta-
tion.

• Test the results to make sure that they work. We’ll look at this in Chapter 8, Testing the
package.

• We’ll discuss how to do installation correctly, accurately and completely in Chapter 9,
Installation.

• Tidy up after the build. In Chapter 10, Where to go from here, we’ll look at what this
entails.

Fortunately, almost no package gives you trouble all the way, but it’s interesting to follow a
port through from getting the software to the finished installation, so as far as is possible I’ll
draw my examples in these chapters from a few free software packages for electronic mail and
Usenet news. Specifically, we’ll consider Taylor uucp, the electronic mail reader elm, and C
news. In addition, we’ll look at the GNU C compiler gcc, since it is one of the most

5 February 2005 02:09

10

frequently ported packages. We’ll port them to an Intel 486DX/2-66 machine running
BSD/386 Version 1.1.*

Part 2
As long as things go smoothly, you can get through the kind of port described in the first part
of this book with little or no programming knowledge. Unfortunately, things don’t always go
smoothly. If they don’t, you may need to make possibly far-reaching changes to the sources.
Part 1 doesn’t pay much attention to this kind of modification—that’s the topic of part 2 of
this book, which does expect a good understanding of programming:

• In Chapter 11, Hardware dependencies, we’ll look at problems caused by differences in
the underlying hardware platform.

• In the following five chapters, we’ll look at some of the differences in different UNIX
flavours. First we’ll look at a number of smaller differences in Chapter 12, Kernel
dependencies, then we’ll look at some of the more common problem areas in Chapter 13,
Signals, Chapter 14, File systems, Chapter 15, Terminal drivers, and Chapter 16, Time-
keeping.

• We’ll look at the surprising number of headaches caused by header files in Chapter 17,
Header files, and at system library functionality in Chapter 18, Function libraries.

• We’ll examine the differences between various flavours of the more important tools in
Chapter 19, Make, Chapter 20, Compilers, and Chapter 21, Object files and friends.

Finally, there are a number of appendixes:

• Appendix A, Comparative reference to UNIX data types, describes the plethora of data
types that have dev eloped since the advent of ANSI C.

• Appendix B, Compiler flags, giv es you a comparative reference to the compiler flags of
many common systems.

• Appendix C, Assembler directives and flags, giv es you a comparative reference to assem-
bler directives and flags.

• Appendix D, Linker flags, giv es you a comparative reference to linker flags.

• Appendix E, Where to get sources, giv es you information on where to find useful source
files, including a number of the packages we discuss in this book.

* With the exception of Taylor uucp, BSD/OS, which at the time was called BSD/386, is supplied with
all these packages, so you would only be need to port them if you wanted to modify them or port a new
version.

5 February 2005 02:09

Chapter 1: Introduction 11

Preparations
You don’t need much to port most packages. Normally everything you need—a C compiler, a
C library, make and some standard tools—should be available on your system. If you have a
system that doesn’t include some of these tools, such as a System V release where every indi-
vidual program seems to cost extra, or if the tools are so out-of-date that they are almost use-
less, such as XENIX, you may have problems.

If your tools are less than adequate, you should consider using the products of the Free Soft-
ware Foundation. In particular, the GNU C compiler gcc is better than many proprietary com-
pilers, and is the standard compiler of the Open Software Foundation. You can get many
packages directly from the Internet or on CD-ROM. If you are going to be doing any serious
porting, I recommend that you get at least the GNU software packages, 4.4BSD Lite, and
TEX, preferably on CD-ROM. In particular, the GNU software and 4.4BSD Lite contain the
sources to many library functions that may be missing from your system. In addition, many
of the GNU packages are available in precompiled binary form from a number of sources. I’ll
refer to these packages frequently in the text.

5 February 2005 02:09

