
Where to go from here

Finally it’s all over. The package is ported, you’ve installed the software, and it really does
work. This time, we’re done!

Well, we said that once before, before we started testing, and we were wrong. We’re wrong
here, too:

• In the course of the port, you may find a bug or a misfeature and fix it. If you do so, you
have effectively created a new version of the package. You should send in information
about these changes to the author. If this is a popular package, you might consider
reporting the changes to the Usenet group that exists for the package.

• You no longer need the space on disk, so you can clean up the archive and write it to
tape. It’s a good idea to maintain enough documentation to be able to retrieve it again.

• Sometime, maybe very soon, somebody will come out with a fix for a bug that will prob-
ably bite you some time, or with a feature that could really be of use to you. Your expe-
rience with this port will help you to port the new version.

None of this is much work now, and it will save you grief later on. Let’s look at it in a little
more detail.

Reporting modifications
Once you have the software running, you should report any changes to the author or main-
tainer of the software. In order for this to be of any use, you need to supply the following
information:

• A description of the problems you ran into. Don’t spare details here: remember the pain
you went to to figure out what was going wrong, and you had an interest in solving the
problem. If you’re the first person to run into the problem, it probably hasn’t hurt any-
body else, least of all the author. He probably gets lots of mail saying “xfoo is broke”,
and he may not believe what you have to say until you prove it to him.

• How you fixed them. Again, lots of detail. The author probably understands the package
better than you do. If you explain the problem properly, he may come up with a better

143

5 February 2005 02:09

144

fix.

• The fixes themselves. diffs, lists of differences between the previous version and your
versions, are the method of choice. We’ll look at them in the rest of this section.

diff
diff is a program that compares two related source files and outputs information about how to
create the second file from the first. You typically use it after making modifications to a file in
order to describe how the modified file differs from the original. The resultant output file is
also called a diff. We saw the application of diffs in Chapter 3, Care and feeding of source
trees, page 29. Here we’ll look at how to make them.

It’s useful to recognize and understand diff formats, since you occasionally have to apply
them manually. diff compares two source files and attempts to output a reasonably succinct
list of the differences between them. In diff terminology, the output is grouped into hunks,
information about a relatively local groups of differences.

Like most useful programs, diff has grown in the course of time, and modern versions can out-
put in a bewildering number of formats. Fortunately, almost all diffs nowadays use the con-
text format. We’ll look at some others anyway so that you can recognize them.

In the following examples, we compare the files eden.1:

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
course of their arguments, they got all the way back to the
Garden of Eden, whereupon the doctor said, "The medical
profession is clearly the oldest, because Eve was made from
Adam’s rib, as the story goes, and that was a simply
incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
this said, "Yes, but where do you think the chaos came
from?"

and eden.2:

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
course of their arguments, they came to discuss the Garden
of Eden, whereupon the doctor said, "The medical profession
is clearly the oldest, because Eve was made from Adam’s rib,
as the story goes, and that was a simply incredible surgical
feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of

5 February 2005 02:09

Chapter 10: Where to go from here 145

this, said, "Yes, but where do you think the chaos came
from?"

normal format diffs

As the name implies, the normal format is the default. You don’t need to specify any format
flags:

$ diff eden.1 eden.2
3,7c3,7
< course of their arguments, they got all the way back to the
< Garden of Eden, whereupon the doctor said, "The medical
< profession is clearly the oldest, because Eve was made from
< Adam’s rib, as the story goes, and that was a simply
< incredible surgical feat."

> course of their arguments, they came to discuss the Garden
> of Eden, whereupon the doctor said, "The medical profession
> is clearly the oldest, because Eve was made from Adam’s rib,
> as the story goes, and that was a simply incredible surgical
> feat."
13c13
< this said, "Yes, but where do you think the chaos came

> this, said, "Yes, but where do you think the chaos came

The first line of each hunk specifies the line range: 3,7c3,7 means “lines 3 to 7 of the first
file, lines 3 to 7 of the second file”. 13c13 means “line 13 of the first file, line 13 of the sec-
ond file, has changed (c)”. Instead of c you will also see d (lines deleted) and a (lines added).

After this header line come the lines of the first file, with a leading < character, then a divider
(---) and the lines of the second file with a leading > character. This example has two hunks.

ed format diffs

ed format diffs have the dubious advantage that the program ed can process them. You can
create them with the -e flag. In this example, we also use shell syntax to shorten the input
line. Writing eden.[12] is completely equivalent to writing eden.1 eden.2.

$ diff -e eden.[12]
13c
this, said, "Yes, but where do you think the chaos came
.
3,7c
course of their arguments, they came to discuss the Garden
of Eden, whereupon the doctor said, "The medical profession
is clearly the oldest, because Eve was made from Adam’s rib,
as the story goes, and that was a simply incredible surgical
feat."
.

Just about everybody who has diff also has patch, and nowadays not everybody has ed. In
addition, this format is extremely dangerous, since there is no information about the old

5 February 2005 02:09

146

content of the file: you can’t be sure if the patch will be applied in the right place. As a result,
you almost never see this form.

context diffs

You select a context diff with the flag -c:

$ diff -c eden.[12]
*** eden.1 Tue May 10 14:21:47 1994
--- eden.2 Tue May 10 14:22:38 1994

*** 1,14 ****

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the

! course of their arguments, they got all the way back to the
! Garden of Eden, whereupon the doctor said, "The medical
! profession is clearly the oldest, because Eve was made from
! Adam’s rib, as the story goes, and that was a simply
! incredible surgical feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
! this said, "Yes, but where do you think the chaos came
from?"

--- 1,14 ----
A doctor, an architect, and a computer scientist

were arguing about whose profession was the oldest. In the
! course of their arguments, they came to discuss the Garden
! of Eden, whereupon the doctor said, "The medical profession
! is clearly the oldest, because Eve was made from Adam’s rib,
! as the story goes, and that was a simply incredible surgical
! feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
! this, said, "Yes, but where do you think the chaos came

The output here gives us significantly more information: the first two line gives the name and
modification timestamp of the files. Then the hunks start, with a row of * as a leader. The
next line is line number information for the first file (lines 1 to 14), after which come the lines
themselves, surrounded by a number of lines of context, unchanged information. You can
specify the number of lines of context, but by default diff includes 2 lines either side of the
changes. The lines that have been modified are flagged with an exclamation mark (!) at the
beginning of the line. In this case, the file is so small that the two modifications have been
merged into one large one, and the whole file gets repeated, but in a larger file diff would
include only the information immediately surrounding the changes. This format is more reli-
able than normal diffs: if the original source file has changed since the diff, the context

5 February 2005 02:09

Chapter 10: Where to go from here 147

information helps establish the correct location to apply the patch.

unified context diffs

unified diffs are similar to normal context diffs. They are created with the -u flag:

$ diff -u eden.[12]
--- eden.1 Tue May 10 14:21:47 1994
+++ eden.2 Tue May 10 14:22:38 1994
@@ -1,14 +1,14 @@

A doctor, an architect, and a computer scientist
were arguing about whose profession was the oldest. In the
-course of their arguments, they got all the way back to the
-Garden of Eden, whereupon the doctor said, "The medical
-profession is clearly the oldest, because Eve was made from
-Adam’s rib, as the story goes, and that was a simply
-incredible surgical feat."
+course of their arguments, they came to discuss the Garden
+of Eden, whereupon the doctor said, "The medical profession
+is clearly the oldest, because Eve was made from Adam’s rib,
+as the story goes, and that was a simply incredible surgical
+feat."

The architect did not agree. He said, "But if you
look at the Garden itself, in the beginning there was chaos
and void, and out of that, the Garden and the world were
created. So God must have been an architect."

The computer scientist, who had listened to all of
-this said, "Yes, but where do you think the chaos came
+this, said, "Yes, but where do you think the chaos came
from?"

As with context diffs, there is a header with information about the two files, followed by a
hunk header specifying the line number range in each of the two files. Unlike a normal con-
text diff, the following hunk contains the old text mingled with the new text. The lines pre-
fixed with the character - belong to the first file, those prefixed with + belong to the second
file — in other words, to convert the old file to the new file you remove the lines prefixed with
- and insert the lines prefixed with +.

There are still other formats offered by various flavours of diff, but these are the only impor-
tant ones.

What kind of diff?

As we’ve seen, ed style diffs are out of the question. You still have the choice between regular
diffs, context diffs and unified context diffs. It’s not that important which kind of diff you
choose, but context diffs are easier to apply manually. Unified context diffs take up less space
than regular context diffs, but there are still versions of patch out there that don’t understand
unified diffs. Until that changes, it’s probably best to settle for regular context diffs. You may
have noticed that all the examples in Chapter 3, Care and feeding of source trees, were regular
context diffs.

5 February 2005 02:09

148

Living with diff

Diff is a straightforward enough program, but you might run into a couple of problems:

• After a large port, it makes sense to make diffs of the whole directory hierarchy. This
requires that you have copies of all the original files. You can use rcsdiff, part of the
RCS package, but it only does diffs one at a time. I find it easier to maintain a copy of
the complete original source tree, and then run diff with the option -r (descend recur-
sively into directories):

$ diff -ru /S/SCO/Base/gcc-2.6.3 /S/Base/Core/gcc-2.6.3 >SCO.diffs

This command will create a single file with all the diffs and a list of files which only exist
in the first directory. This can be important if you have added files, but it also means that
you should do a make clean before running diff, or you will have entries of this kind for
all the object files you create.

• Another problem that may occur is that one of the files does not have a newline character
at the end of the last line. This does not normally worry compilers, but diff sees fit to
complain. This is particularly insidious, because patch doesn’t like the message, and it
causes patch to fail.

Saving the archive
Most of us have had the message Don’t forget to make backups drummed into us since we
were in elementary school, but nowhere does it make more sense than at the end of a port.
Don’t forget where you put it! After archiving your port of xfoo, you may not look at it again
for three years. When the new version comes out, you try to port it, but all sorts of things go
wrong. Now is the time to get out the old version and read your notes—but where is it?

It’s beyond the scope of this book to go into backup strategies, but you should do some think-
ing about the subject. One good idea is to keep separate (DAT or Exabyte) tapes of old ports,
and just add additional archives at the end. That way you don’t hav e to worry about overwrit-
ing them accidentally: the tapes are small and cheap enough that you can afford to keep their
contents almost indefinitely. If you don’t choose this method (maybe because the media don’t
fit into your QIC-150 tape drive), you need to think carefully about how to track the archives
and when they are no longer needed.

Not done after all?
Of course, it may be that this optimistic finish is completely out of place. After what seems
like months of frustration, you finally decide that you are never going to get this &%%$@# to
work, and you give up. You can never rule out this possibility—as I said in Chapter 1, Intro-
duction, I hope this book made it easier, but it’s not a magic scroll.

Even if you do give up, you have some tidying up to do: you obviously can’t send the author
your bug fixes, but you can at least report the bugs. What he does with them depends on his
interest and his contractual obligations, but even with free software, which is free of obliga-
tions of this nature, the author may be interested enough to fix the problem. One way or

5 February 2005 02:09

Chapter 10: Where to go from here 149

another, you should go to the trouble to report problems you experience, even if you can’t fix
them and there is no support obligation.

A final word: if you give up on a port after getting this far, this book has failed for you. I
don’t want that to happen. Please contact me, too (grog@lemis.de, or via O’Reilly and As-
sociates) and explain the problem. Like the authors of the software, I don’t guarantee to do
anything about it, but I might, and your experience might help to make the next edition of this
book more useful.

5 February 2005 02:09

