
4
Package configuration

Programs don’t run in a vacuum: they interface with the outside world. The view of this out-
side world differs from location to location: things like host names, system resources, and
local conventions will be different. Theoretically, you could change the program sources
ev ery time you install a package on a new system, but besides being a pain, it’s very error-
prone. All modern packages supply a method of configuration, a simplified way of adapting
the sources to the environment in which the program will run. In this chapter, we’ll look at
common configuration conventions. We can divide system differences into one of three cate-
gories:

• The kind of hardware the package will run on. A compiler needs to generate the correct
machine instructions, and an X server needs to know how to transfer data to the display
hardware. Less well-written programs have hardware dependencies that could have been
avoided with some forethought. We’ll look at this in more detail in Chapter 11, Hard-
ware dependencies.

• The system software with which it will interact. Differences between UNIX systems are
significant enough that it will be necessary to make certain decisions depending on the
system flavour. For example, a communications program will need to know what kind of
network interface your system has. Programs that come from other systems may need
significant rewriting to conform with UNIX library calls. We’ll look at these dependen-
cies in part 2 of this book, from Chapter 12, Kernel dependencies to Chapter 21, Object
files and friends.

• The local configuration. These may include obvious things like the system name, aspects
of program behaviour, information about tools used locally, or local system conventions.

In this chapter, we’ll look at what local configuration entails, and how we tell the package
about our chosen configuration.

47

5 February 2005 02:09



48

Installation paths
Your system configuration may place constraints on where you can install the software. This
is not normally a problem for individual systems, but on a large, heterogeneous network it
could require more consideration.

Traditionally, non-system software has been installed in the hierarchy /usr/local. This is not
an æsthetically pleasing location: the hierarchy can become quite large, and in a network
many systems might share the directory.

One of the best thought-out descriptions of a modern file system structure is in the UNIX Sys-
tem V Application Binary Interface, which is also similar to structures used by SunOS and the
newer BSD variants. In brief, it specifies the following top-level directories:

/ The root directory.

/dev The directory tree containing device files.

/etc Directory for machine-specific configuration files.

/opt Directory for add-on software.

/usr This directory used to be the other file system on a UNIX machine. In the
System V ABI it has lost most of its importance. The ABI states uses only
for /usr/bin and /usr/share, and the name /usr has lost its original meaning:
the ABI specifies /usr only as a location for system files that users may wish
to access.

/usr/bin is intended for “Utility programs and commands for the use of all applica-
tions and users”. In practice, it’s better to use this directory for system pro-
grams only.

/usr/share The System V ABI states that /usr/share is intended for “architecture-inde-
pendent shareable files”. In practice, those versions of System V that still
have man pages put them in /usr/share/man, and terminfo data are stored in
/usr/share/lib/terminfo. The rest of the directory may contain a few other
odds and ends, but these two directories make up over 99% of the content.
The choice of the location /usr/share is not a happy choice: firstly, it is fre-
quently a separate file system, but it must be mounted on a non-root file sys-
tem, and secondly the man pages aren’t really architecture-independent.
The choice makes more sense from the point of view of the Unix Systems
Group, who are concerned only with pure System V: the man pages are
mainly independent of hardware architecture. However, in a real-world net
you probably have two or three different operating systems, each with their
own man pages.

/var This directory contains files that are frequently modified. Typical subdirec-
tories are /var/tmp for temporary files and /var/spool for printer output, uucp
and news.

The System V ABI does not say anything about where to store user files. The Seventh Edition
typically stored them as a subdirectory of /usr, but newer systems have tended to store them in
a directory called /home.

5 February 2005 02:09



Chapter 4: Package configuration 49

The /opt hierarchy resembles that of /usr. A typical structure is:

/opt/bin for executables.

/opt/man for man pages — not /opt/share/man, unlike the structure in /usr.

/opt/lib for additional files used by executables. In particular, this directory could
contain library archives for compilers, as well as the individual passes of the
compilers.

/opt/<pkg> This is where the System V ABI places individual package data. Not many
other systems follow it.

/opt/lib/<pkg> This is where most packages place private data.

Using the /opt hierarchy has one disadvantage: you may not want to have a separate file sys-
tem. In modern systems, the solution is simple enough: place the directory where you want it,
and create a symbolic link /opt that points to it. This works only if your system has symbolic
links, of course, so I have come to a compromise: I use /opt on systems with symbolic links,
and /usr/local on systems without symbolic links.

Many packages compile pathnames into the code, either because it’s faster that way, or
because it’s easier. As a result, you should set the path names before compilation—don’t put
off this task until you’re ready to install, or you may run into problems where the packages are
all nicely installed in the correct place and look for data in the wrong directories.

Preferred tools
Many of the most popular software packages are alternative tools. Free software such as gcc,
emacs and perl have become so popular that they are frequently supplied with proprietary sys-
tem releases, and many other systems have ported them and use them as standard tools. If
you want to use such programs, you need to tell the configuration routines about them.

Depending on the tools you use, you may also need to change the flags that you pass to them.
For example, if you compile with gcc, you may choose to include additional compiler flags
such as -fstrength-reduce, which is specific to gcc.

Conveying configuration information
The goal of configuration is to supply the configuration information to the program sources.
A good configuration mechanism will hide this from you, but it’s helpful to understand what
it’s doing. In this section, we’ll look under the covers — you can skip it if it looks too techni-
cal.

There are a number of possible ways to use configuration information: for example, the pack-
age may have separate communication modules for STREAMS and sockets, and the configu-
ration routines may decide which of the two modules to compile. More typically, howev er,
the configuration routines convey configuration information to the package by defining pre-
processor variables indicating the presence or absence of a specific feature. Many packages
provide this information in the make variable CFLAGS—for example, when you make bash,
the GNU Bourne Again Shell, you see things like

5 February 2005 02:09



50

$ make
gcc -DOS_NAME=’"FreeBSD"’ -DProgram=bash -DSYSTEM_NAME=’"i386"’ \
-DMAINTAINER=’"bug-bash@prep.ai.mit.edu"’ -O -g -DHAVE_SETLINEBUF -DHAVE_VFPRINTF \
-DHAVE_UNISTD_H -DHAVE_STDLIB_H -DHAVE_LIMITS_H -DHAVE_GETGROUPS \
-DHAVE_RESOURCE -DHAVE_SYS_PARAM -DVOID_SIGHANDLER -DOPENDIR_NOT_ROBUST \
-DINT_GROUPS_ARRAY -DHAVE_WAIT_H -DHAVE_GETWD -DHAVE_DUP2 -DHAVE_STRERROR \
-DHAVE_DIRENT -DHAVE_DIRENT_H -DHAVE_STRING_H -DHAVE_VARARGS_H -DHAVE_STRCHR \
-DHAVE_STRCASECMP -DHAVE_DEV_FD -D"i386" -D"FreeBSD" -DSHELL -DHAVE_ALLOCA \
-I. -I. -I././lib/ -c shell.c

The -D arguments pass preprocessor variables that define the configuration information.

An alternative method is to put this information in a file with a name like config.h. Taylor
uucp does it this way: in config.h you will find things like:

/* If your compiler supports prototypes, set HAVE_PROTOTYPES to 1. */
#define HAVE_PROTOTYPES 1

/* Set ECHO_PROGRAM to a program which echoes its arguments; if echo
is a shell builtin you can just use "echo". */

#define ECHO_PROGRAM "echo"

/* The following macros indicate what header files you have. Set the
macro to 1 if you have the corresponding header file, or 0 if you
do not. */

#define HAVE_STDDEF_H 1 /* <stddef.h> */
#define HAVE_STDARG_H 1 /* <stdarg.h> */
#define HAVE_STRING_H 1 /* <string.h> */

I prefer this approach: you have all the configuration information in one place, it is docu-
mented, and it’s more reliable. Assuming that the Makefile dependencies are correct, any
change to config.h will cause the programs to be recompiled on the next make. As we will see
in Chapter 5, Building the package, page 68, this usually doesn’t happen if you modify the
Makefile.

Typically, configuration information is based on the kind of operating system you run and the
kind of hardware you use. For example, if you compile for a Sparc II running SunOS 4.1.3,
you might define sparc to indicate the processor architecture used and sunos4 to indicate the
operating system. Since SunOS 4 is basically UNIX, you might also need to define unix. On
an Intel 486 running UnixWare you might need to define i386 for the processor architecture,*

and SVR4 to indicate the operating system. This information is then used in the source files as
arguments to preprocessor #ifdef commands. For example, the beginning of each source
file, or a general configuration file, might contain:

#ifdef i386
#include "m/i386.h"
#endif
#ifdef sparc
#include "m/sparc.h"
#endif

* Why not i486? The processor is an Intel 486, but the architecture is called the i386 architecture. You
also use i386 when compiling for a Pentium.

5 February 2005 02:09



Chapter 4: Package configuration 51

#ifdef sunos4
#include "s/sunos4.h"
#endif
#ifdef SVR4
#include "s/usg-4.0.h"
#endif

You can get yourself into real trouble if you define more than one machine architecture or
more than one operating system. Since configuration is usually automated to some extent, the
likelihood of this is not very great, but if you end up with lots of double definitions when
compiling, this is a possible reason.

Configuration through the preprocessor works nicely if the hardware and software both
exactly match the expectations of the person who wrote the code. In many cases, this is not
the case: looking at the example above, note that the file included for SVR4 is s/usg-4.0.h,
which suggests that it is intended for UNIX System V release 4.0. UnixWare is System V
release 4.2. Will this work? Maybe. It could be that the configuration mechanism was last
revised before System V.4.2 came out. If you find a file s/usg-4.2.h, it’s a good idea to use it
instead, but otherwise it’s a matter of trial and error.

Most software uses this approach, although it has a number of significant drawbacks:

• The choices are not very detailed: for example, most packages don’t distinguish between
Intel 386 and Intel 486, although the latter has a floating point coprocessor and the for-
mer doesn’t.

• There is no general consensus on what abbreviations to use. For UnixWare, you may
find that the correct operating system information is determined by USG (USG is the
Unix Systems Group, which, with some interruption,* is responsible for System V),
SYSV, SVR4, SYSV_4, SYSV_4_2 or even SVR3. This last can happen when the configu-
ration needed to be updated from System V.2 to System V.3, but not again for System
V.4.

• The choice of operating system is usually determined by just a couple of differences. For
example, base System V.3 does not have the system call rename, but most versions of
System V.3 that you will find today have it. System V.4 does have rename. A software
writer may use #ifdef SVR4 only to determine whether the system has the rename sys-
tem call or not. If you are porting this package to a version of System V.3.2 with
rename, it might be a better idea to define SVR4, and not SVR3.

• Many aspects attributed to the kernel are in fact properties of the system library. As we
will see in the introduction to Part 2 of this book, there is a big difference between kernel
functionality and library functionality. The assumption is that a specific kernel uses the
library with which it is supplied. The situation is changing, though: many companies sell
systems without software development tools, and alternative libraries such as the GNU C
library are becoming available. Making assumptions about the library based on the ker-
nel was never a good idea—now it’s completely untenable. For example, the GNU C

* The first USG was part of AT&T, and was superseded by UNIX Systems Laboratories (USL). After
the sale of USL to Novell, USL became Novell’s UNIX Systems Group.

5 February 2005 02:09



52

library supplies a function rename where needed, so our previous example would fail
ev en on a System V.3 kernel without a rename system call if it uses the GNU C library.
As you can imagine, many packages break when compiled with the GNU C library,
through their own fault, not that of the library.

In the example above, it would make a whole lot more sense to define a macro HAS_RENAME
which can be set if the rename function is present. Some packages use this method, and the
GNU project is gradually working towards it, but the majority of packages base their deci-
sions primarily on the combination of machine architecture and operating system.

The results of incorrect configuration can be far-reaching and subtle. In many cases, it looks
as if there is a bug in the package, and instead of reconfiguring, you can find yourself making
significant changes to the source. This can cause it to work for the environment in which it is
compiled, but to break it for anything else.

What do I need to change?
A good configuration mechanism should be able to decide the hardware and software depen-
dencies that interest the package, but only you can tell it about the local preferences. For
example, which compiler do you use? Where do you want to install the executables? If you
don’t know the answers to these questions, there’s a good chance that you’ll be happy with the
defaults chosen by the configuration routines. On the other hand, you may want to use gcc to
compile the package, and to install the package in the /opt hierarchy. In all probability, you’ll
have to tell the configuration routines about this. Some configuration routines will look for
gcc explicitly, and will take it if they find it. In this case, you may have a reason to tell the
configuration routines not to use gcc.

Some packages have a number of local preferences: for example, do you want the package to
run with X11 (and possibly fail if X isn’t running)? This sort of information should be in the
README file.

Creating configuration information
A number of configuration methods exist, none of them perfect. In most cases you don’t get a
choice: you use the method that the author of the package decided upon. The first significant
problem can arise at this point: what method does he use? This is not always easy to figure
out — it should be described in a file called README or INSTALL or some such, but occasion-
ally you just find cryptic comments in the Makefile.

In the rest of this chapter we’ll look at configuration via multiple Makefile targets, manual
configuration, shell scripts, and imake, the X11 configuration mechanism. In addition, the
new BSD make system includes a system of automatic configuration: once it is set up, you
don’t hav e to do anything, assuming you already have a suitable Makefile. We’ll look at this
method in more detail in Chapter 19, Make, page 323.

5 February 2005 02:09



Chapter 4: Package configuration 53

Multiple Makefile targets
Some packages anticipate every possibility for you and supply a customized Makefile. For
example, when building unzip, a free uncompression utility compatible with the DOS package
PK-ZIP, you would find:

$ make
If you’re not sure about the characteristics of your system, try typing "make
generic". If the compiler barfs and says something unpleasant about "timezone
redefined," try typing "make clean" followed by "make generic2". One of these
actions should produce a working copy of unzip on most Unix systems. If you
know a bit more about the machine on which you work, you might try "make list"
for a list of the specific systems supported herein. And as a last resort, feel
free to read the numerous comments within the Makefile itself. Note that to
compile the decryption version of UnZip, you must obtain the full versions of
crypt.c and crypt.h (see the "Where" file for ftp and mail-server sites). Have
an excruciatingly pleasant day.

As the comments suggest, typing make generic should work most of the time. If it doesn’t,
looking at the Makefile reveals a whole host of targets for a number of combined hard-
ware/software platforms. If one of them works for you, and you can find which one, then this
might be an easy way to go. If none does, you might find yourself faced with some serious
Makefile rewriting. This method has an additional disadvantage that it might compile with no
problems and run into subtle problems when you try to execute it—for example, if the pro-
gram expects System V sigpause and your system supplies BSD sigpause,* the build
process may complete without detecting any problems, but the program will not run correctly,
and you might have a lot of trouble finding out why.

Manual configuration
Modifying the Makefile or config.h manually is a better approach than multiple Makefile tar-
gets. This seemingly arduous method has a number of advantages:

• You get to see what is being changed. If you have problems with the resultant build, it’s
usually relatively easy to pin-point them.

• Assuming that the meanings of the parameters are well documented, it can be easier to
modify them manually than run an automated procedure that hides much of what it is
doing.

• If you find you do need to change something, you can usually do it fairly quickly. With
an automated script, you may need to go through the whole script to change a single
minor parameter.

On the down side, manual configuration requires that you understand the issues involved: you
can’t do it if you don’t understand the build process. In addition, you may need to repeat it
ev ery time you get an update of the package, and it is susceptible to error.

* See Chapter 13, Signals, pages 190 and 192 for further information.

5 February 2005 02:09



54

Configuration scripts
Neither multiple Makefile targets nor manual modification of the Makefile leave you with the
warm, fuzzy feeling that everything is going to work correctly. It would be nice to have a
more mechanized method to ensure that the package gets the correct information about the
environment in which it is to be built. One way to do this is to condense the decisions you
need to make in manual configuration into a shell script. Some of these scripts work very
well. A whole family of configuration scripts has grown up in the area of electronic mail and
news. Here’s part of the configuration script for C news, which for some reason is called
build:

$ cd conf
$ build
This interactive command will build shell files named doit.root,
doit.bin, doit.news, and again.root to do all the work. It will not
actually do anything itself, so feel free to abort and start again.

C News wants to keep most of its files under a uid which preferably
should be all its own. Its programs, however, can and probably should
be owned by another user, typically the same one who owns most of the
rest of the system. (Note that on a system running NFS, any program
not owned by "root" is a gaping security hole.)
What user id should be used for news files [news]? RETURN pressed
What group id should be used for news files [news]? RETURN pressed
What user id should be used for news programs [bin]? RETURN pressed
What group id should be used for news programs [bin]? RETURN pressed
Do the C News sources belong to bin [yes]? no
You may need to do some of the installation procedures by hand
after the software is built; doit.bin assumes that it has the
power to create files in the source directories and to update
the news programs.

It would appear that your system is among the victims of the
4.4BSD / SVR4 directory reorganization, with (e.g.) shared
data in /usr/share. Is this correct [yes]? RETURN pressed
This will affect where C News directories go. We recommend
making the directories wherever they have to go and then making
symbolic links to them under the standard names that are used
as defaults in the following questions. Should such links
be made [yes]? no

We chose not to use the symbolic links: the script doesn’t say why this method is recom-
mended, they don’t buy us anything, and symbolic links mean increased access time.

The configuration script continues with many more questions like this. We’ll pick it up at var-
ious places in the book.

The flexibility of a shell script is an advantage when checking for system features which are
immediately apparent, but most of them require that you go through the whole process from
start to finish if you need to modify anything. This can take up to 10 minutes on each occa-
sion, and they are often interactive, so you can’t just go away and let it do its thing.

5 February 2005 02:09



Chapter 4: Package configuration 55

GNU package configuration
Most GNU project packages supply another variety of configuration script. For more details,
see Programming with GNU Software, by Mike Loukides. GNU configuration scripts some-
times expect you to know the machine architecture and the operating system, but they often
attempt to guess if you don’t tell them. The main intention of the configuration utility is to
figure out which features are present in your particular operating system port, thus avoiding
the problems with functions like rename discussed on page 51. Taylor uucp uses this method:

$ sh configure
checking how to run the C preprocessor
checking whether -traditional is needed see page 351
checking for install the install program, page 128
checking for ranlib see page
checking for POSIXized ISC Interactive POSIX extensions?
checking for minix/config.h MINIX specific
checking for AIX IBM UNIX
checking for -lseq libseq.a needed?
checking for -lsun libsun.a?
checking whether cross-compiling
checking for lack of working const see page 339
checking for prototypes does the compiler understand function prototypes?
checking if ‘#!’ works in shell scripts
checking for echo program is echo a program or a builtin?
checking for ln -s do we have symbolic links? (page 218)

This method makes life a whole lot easier if the package has already been ported to your par-
ticular platform, and if you are prepared to accept the default assumptions that it makes, but
can be a real pain if not:

• You may end up having to modify the configuration scripts, which are not trivial.

• It’s not always easy to configure things you want. In the example above, we accepted the
default compiler flags. If you want maximum optimization, and the executables should
be installed in /opt/bin instead of the default /usr/local/bin, running configure becomes
significantly more complicated:*

$ CFLAGS="-O3 -g" sh configure --prefix=/opt

• The scripts aren’t perfect. You should really check the resultant Makefiles, and you will
often find that you need to modify them. For example, the configuration scripts of many
packages, including the GNU debugger, gdb, do not allow you to override the preset
value of CFLAGS. In other cases, you can run into a lot of trouble if you do things that
the script didn’t expect. I once spent a couple of hours trying to figure out the behaviour
of the GNU make configuration script when porting to Solaris 2.4:

* This example uses the feature of modern shells of specifying environment variables at the beginning of
the command. The program being run is sh, and the definition of CFLAGS is exported only to the pro-
gram being started.

5 February 2005 02:09



56

$ CFLAGS="O3 -g" configure --prefix=/opt
creating cache ./config.cache
checking for gcc... gcc
checking whether we are using GNU C... yes
checking how to run the C preprocessor... gcc -E
checking whether cross-compiling... yes

Although this was a normal port, it claimed I was trying to cross-compile. After a lot of
experimentation, I discovered that the configuration script checks for cross-compilation
by compiling a simple program. If this compilation fails for any reason, the script
assumes that it should set up a cross-compilation environment. In this case, I had mis-
takenly set my CFLAGS to O3 -g—of course, I had meant to write -O3 -g. The com-
piler looked for a file O3 and couldn’t find it, so it failed. The configuration script saw
this failure and assumed I was cross-compiling.

• In most cases, you need to re-run the configuration script every time a package is
updated. If the script runs correctly, this is not a problem, but if you need to modify the
Makefile manually, it can be a pain. For example, gdb creates 12 Makefiles. If you want
to change the CFLAGS, you will need to modify each of them every time you run config-
ure.

• Like all configuration scripts, the GNU scripts have the disadvantage of only configuring
things they know about. If your man program requires pre-formatted man pages, you
may find that there is no way to configure the package to do what you want, and you end
up modifying the Makefile after you have built it.

Modifying automatically build Makefiles is a pain. An alternative is to modify Makefile.in,
the raw Makefile used by configure. That way, you will not have to redo the modifications
after each run of configure.

imake
imake is the X11 solution to package configuration. It uses the C preprocessor to convert a
number of configuration files into a Makefile. Here are the standard files for X11R6:

• Imake.tmpl is the main configuration file that is passed to the C preprocessor. It is
responsible for including all the other configuration files via the preprocessor #include
directive.

• Imake.cf determines the kind of system upon that imake is running. This may be based
on preprocessor variables supplied by default to the preprocessor, or on variables com-
piled in to imake.

• site.def describes local preferences. This is one of the few files that you should normally
consider modifying.

• As its name implies, <vendor>.cf has a different name for each platform. Imake.tmpl
decides which file to include based on the information returned by Imake.cf. For exam-
ple, on BSD/OS the file bsdi.cf will be included, whereas under SunOS 4 or Solaris 2 the
file sun.cf will be included.

5 February 2005 02:09



Chapter 4: Package configuration 57

• Imake.rules contains preprocessor macros used to define the individual Makefile targets.

• Imakefile is part of the package, not the imake configuration, and describes the package
to imake.

You don’t normally run imake directly, since it needs a couple of pathname parameters:
instead you have two possibilities:

• Run xmkmf, which is a one-line script that supplies the parameters to imake.

• Run make Makefile. This assumes that some kind of functinoal Makefile is already
present in the package.

Strangely, make Makefile is the recommended way to create a new Makefile. I don’t agree:
one of the most frequent reasons to make a new Makefile is because the old one doesn’t work,
or because it just plain isn’t there. If your imake configuration is messed up, you can easily
remove all traces of a functional Makefile and have to restore the original version from tape.
xmkmf always works, and anyway, it’s less effort to type.

Once you have a Makefile, you may not be finished with configuration. If your package con-
tains subdirectories, you may need to create Makefiles in the subdirectories as well. In gen-
eral, the following sequence will build most packages:

$ xmkmf run imake against the Imakefile
$ make Makefiles create subordinate Makefiles
$ make depend run makedepend against all Makefiles
$ make make the packages
$ make install install the packages

These commands include no package-dependent parameters—the whole sequence can be run
as a shell script. Well, yes, there are minor variations: make Makefiles fails if there are no
subordinate Makefiles to be made, and sometimes you have targets like a make World instead
of make or make all, but in general it’s very straightforward.

If your imake configuration files are set up correctly, and the package that you are porting con-
tains no obscenities, this is all you need to know about imake, which saves a lot of time and is
good for your state of mind. Otherwise, check Software Portability with imake, by Paul
DuBois, for the gory details.

5 February 2005 02:09


