
6
Running the compiler

In the previous chapter, we looked at building from the viewpoint of make. The other central
program in the build process is the compiler, which in UNIX is almost always a C compiler.
Like make, the compiler can discover a surprising number of problems in what ostensibly
debugged source code. In this chapter, we’ll look at these problems and how to solve them.
In we’ll look at how the compiler works and how the various flavours of C differ. Although
we restrict our attention to the C compiler, much of what we discuss relates to other compilers
as well, particularly of course to C++. This chapter expects a certain understanding of the C
language, of course, but don’t be put of if you’re still a beginner: this is more about living
with C than writing it.

Information from the compiler can come in a number of forms:

• The compiler may issue warnings, which are informational messages intended to draw
attention to possible program errors. Their reliability and their value varies significantly:
some are a sure-fire indication that something is wrong, while others should be taken
with a pinch of salt.

• The compiler may issue error messages, indicating its conviction that it cannot produce a
valid output module. This also usually means that the compiler will not create any out-
put files, though you can’t always rely on this.

• The compiler may fail completely, either because of an internal bug or because it realizes
that it no longer understands the input sufficiently to continue.

Compiler warnings
It’s easy to make mistakes when writing programs, but it used to be even easier: nowadays,
ev en the worst compilers attempt to catch dubious constructs and warn you about them. In
this section, we’ll look at what they can and can’t do.

Before compilers worried about coding quality, the program lint performed this task. lint is
still around, but hardly anybody uses it any more, since it doesn’t always match the compiler
being used. This is a pity, because lint can catch a number of dubious situations that evade
most compilers.

77

5 February 2005 02:09

78

Modern compilers can recognize two kinds of potential problems:

• Problems related to dubious program text, like

if (a = 1)
return;

The first line of this example is almost superfluous: if I allocate the value 1 to a, I don’t
need an if to tell me what the result will be. This is probably a typo, and the text should
have been

if (a == 1)
return;

• Problems related to program flow. These are detected by the flow analysis pass of the
optimizer. For example:

int a;
b = a;

The second line uses the value of a before it has been assigned a value. The optimizer
notices this omission and may print a warning.

In the following sections, we’ll examine typical warning messages, how they are detected and
how reliable they are. I’ll base the sections on the warning messages from the GNU C com-
piler, since the it has a particularly large choice of warning messages, and since it is also
widely used. Other compilers will warn about the same kind of problems, but the messages
may be different. Table 6-1 gives an overview of the warnings we’ll see.

Table 6−1: Overview of warning messages

5 February 2005 02:09

Chapter 6: Running the compiler 79

Table 6−1: Overview of warning messages (continued)

Kind of warning page

Changing non-volatile automatic variables 82
Character subscripts to arrays 80
Dequalifying types 81
Functions with embedded extern definitions 84
Implicit conversions between enums 82
Implicit return type 79
Incomplete switch statements 82
Inconsistent function returns 79
Increasing alignment requirements 81
Invalid keyword sequences in declarations 83
Long indices for switch 82
Missing parentheses 83
Nested comments 83
Signed comparisons of unsigned values 80
Trigraphs 83
Uninitialized variables 80

Implicit return type
K&R C allowed programs like

main ()
{
printf ("Hello, World!\n");
}

ANSI C has two problems with this program:

• The function name main does not specify a return type. It defaults to int.

• Since main is implicitly an int function, it should return a value. This one does not.

Both of these situations can be caught by specifying the -Wreturn-type option to gcc. This
causes the following messages:

$ gcc -c hello.c -Wreturn-type
hello.c:2: warning: return-type defaults to ‘int’
hello.c: In function ‘main’:
hello.c:4: warning: control reaches end of non-void function

Inconsistent function returns
The following function does not always return a defined value:

5 February 2005 02:09

80

foo (int x)
{
if (x > 3)
return x - 1;

}

If x is greater than 3, this function returns x - 1. Otherwise it returns with some uninitial-
ized value, since there is no explicit return statement for this case. This problem is particu-
larly insidious, since the return value will be the same for every invocation on a particular
architecture (possibly the value of x), but this is a by-product of the way the compiler works,
and may be completely different if you compile it with a different compiler or on some other
architecture.

Uninitialized variables
Consider the following code:

void foo (int x)
{
int a;
if (x > 5)
a = x - 3;

bar (a);
... etc

Depending on the value of x, a may or may not be initialized when you call bar. If you select
the -Wuninitialized compiler option, it warns you when this situation occurs. Some com-
pilers, including current versions of gcc place some limitations on this test.

Signed comparisons of unsigned values
Occasionally you see code of the form

int foo (unsigned x)
{
if (x >= 0)

... etc

Since x is unsigned, its value is always >= 0, so the if is superfluous. This kind of problem is
surprisingly common: system header files may differ in opinion as to whether a value is
signed or unsigned. The option -W causes the compiler to issue warnings for this and a whole
lot of other situations.

Character subscripts to arrays
Frequently, the subscript to an array is a character. Consider the following code:

char iso_translate [256] = /* translate table for ISO 8859-1 to LaserJet */
{
codes for the first 160 characters

5 February 2005 02:09

Chapter 6: Running the compiler 81

0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,

... etc
};

#define xlate(x) iso_translate [x];

char *s; /* pointer in buf */
for (*s = buf; *s; s++)
*s = xlate (*s);

The intention of xlate is to translate text to a form used by older model HP LaserJet printers.
This code works only if the char *s is unsigned. By default, the C char type is a signed
value, and so the characters 0x80 to 0xff represent a negative array offset, and the program
attempts (maybe successfully) to access a byte outside the table iso_translate. gcc warns
about this if you set the option -Wchar-subscripts.

Dequalifying types
The following code fragment can cause problems:

char *profane;
void foo (const char *holy)
{
profane = holy;

The assignment of holy to profane loses the qualifier const, and the compiler complains
about the fact. On the other hand, this is valid:

profane = (char *) holy;

This doesn’t make it a better idea: holy is supposed to be unchangeable, and here you are
removing this qualifier. If you specify the -Wcast-qual option to gcc, it complains if you
use a cast to remove a type qualifier such as const.

Increasing alignment requirements
Many processors require that specific data types be aligned on specific boundaries, and the
results can be spectacular if they are not—see Chapter 11, Hardware dependencies, page 158,
for more details. We can easily outsmart the C compiler with code like:

void foo (char *x)
{
int *ip = (int *) x;

In this case, there is a good chance that the int * pointer ip requires a specific alignment and
is not allowed to point at any address in memory the way the char pointer x is allowed to do.
If you specify the -Wcast-align option to gcc, it warns you of such assignments.

5 February 2005 02:09

82

Implicit conversions between enums
One of the advantages of enums is that they make type checking easier—we’ll look at that in
more detail in Chapter 20, Compilers, page 339. If you specify the -Wenum-clash option to
gcc, and you’re compiling C++, it warns about sloppy use of enums.

Incomplete switch statements
A frequent cause of error in a switch statement is that the index variable (the variable that
decides which case is chosen) may assume a value for which no case has been specified. If
the index variable is an int of some kind, there is not much you can do except include a
default clause. If the index variable is an enum, the compiler can check that case clauses
exist for all the possible values of the variable, and warns if they do not. It also warns if case
clauses exist for values that are not defined for the type of the index variable. Specify the
-Wswitch option for these warnings.

long indices for switch
In some dialects of pre-ANSI C, you could write things like

foo (x)
long x;
{
switch (x)
{

... etc

This is no longer allowed in ANSI C: indices for switch must evaluate to an int, even if int
and long have the same length. gcc issues a warning about long indices in switch unless
you specify the -traditional option.

Changing non-volatile automatic variables
Under certain circumstances, a signal handler might modify a local automatic variable if the
function has called setjmp—see Chapter 13, Signals, page 200 for more details. gcc options
this situation as a warning if you specify the -W option. This is a complicated problem:

• It can occur only during an optimizing compilation, since the keyword volatile has mean-
ing only in these circumstances. In addition, the situation is recognized only by the opti-
mizer.

• The optimizer cannot recognize when a longjmp could be performed. This depends on
semantics outside the scope of the optimizer. As a result, it could issue this warning
when there is, in fact, no danger.

5 February 2005 02:09

Chapter 6: Running the compiler 83

Invalid keyword sequences in declarations
Currently, it is permissible to write declarations like

int static bad_usage;

Here the storage class specifier static comes after the type specifier int. The ANSI Standard
still permits this, but declares the usage to be obsolescent. gcc issues a warning when it
encounters this and the option -W has been set.

Trigraphs
Trigraphs (see Chapter 20, Compilers, page 342) are no error, at least according to the ANSI
Standard. The Free Software Foundation makes no bones about their opinion of them, and so
gcc supplies the option -Wtrigraphs, which prints a warning if any trigraphs occur in the
source code. Since this works only if the option -trigraphs is used to enable them, it is not
clear that this is of any real use.

Nested comments
Occasionally you see code like

void foo (int x)
{
int y; /* state information
y = bar (); /* initialize y */
if (y == 4)

... etc

The code looks reasonable, and it is syntactically correct C, but in fact the comment after the
declaration of y is not terminated, so it includes the whole of the next line, which is almost
certainly not the intention. gcc recognizes this if it finds the sequence /* in a comment, and
warns of this situation if you specify the -Wcomment option.

Missing parentheses
What value does the following code return?

int a = 11 << 4 & 7 << 2 > 4;

The result is 0, but the real question is: in what order does the compiler evaluate the expres-
sion? You can find the real answer on page 53 of K&R, but you don’t want to do that all the
time. We can re-write the code as

int a = (11 << 4) & ((7 << 2) > 4);

This makes it a lot clearer what is intended. gcc warns about what it considers to be missing
parentheses if you select the -Wparentheses option. By its nature, this option is subjective,
and you may find that it complains about things that look fine to you.

5 February 2005 02:09

84

Functions with embedded extern definitions
K&R C allowed you to write things like

int datafile;
foo (x)
{
extern open ();
datafile = open ("foo", 0777);
}

The extern declaration was then valid until the end of the source file. In ANSI C, the scope of
open would be the scope of foo: outside of foo, it would no longer be known. gcc issues a
warning about extern statements inside a function definition unless you supply the -tradi-
tional option. If you are using -traditional and want these messages, you can supply
the -Wnested-externs option as well.

Compiler errors
Of course, apart from warnings, you frequently see error messages from the compiler—they
are the most common reason for a build to fail. In this section, we’ll look at some of the more
common ones.

Undefined symbols
This is one of the most frequent compiler error messages you see during porting. At first
sight, it seems strange that the compiler should find undefined symbols in a program that has
already been installed on another platform: if there are such primitive errors in it, how could it
have worked?

In almost every case, you will find one of the following problems:

• The definition you need may have been #ifdef’ed out. For example, in a manually con-
figured package, if you forget to specify a processor architecture, the package may try to
compile with no processor definitions, which is sure to give rise to this kind of problem.

• The symbol may have been defined in a header file on the system where it was devel-
oped. This header file is different on your system, and the symbol you need is never
defined.

• You may be looking at the wrong header files. Some versions of gcc install “fixed”
copies of the system header files in their own private directory. For example, under
BSD/386 version 1.1, gcc version 2.6.3 creates a version of unistd.h and hides it in a pri-
vate directory. This file omits a number of definitions supplied in the BSDI version of
unistd.h. You can confirm which header files have been included by running gcc with the
-H option. In addition, on page 86 we look at a way to check exactly what the preproces-
sor did.

The second problem is surprisingly common, even on supposedly identical systems. For

5 February 2005 02:09

Chapter 6: Running the compiler 85

example, in most versions of UNIX System V.4.2, the system header file link.h defines infor-
mation and structures used by debuggers. In UnixWare 1.0, it defines information used by
some Novell-specific communications protocols. If you try to compile gdb under UnixWare
1.0, you will have problems as a result: the system simply does not contain the definitions you
need.

Something similar happens on newer System V systems with POSIX.1 compatibility. A pro-
gram that seems formally correct may fail to compile with an undefined symbol O_NDELAY.
O_NDELAY is a flag to open, which specifies that the call to open should not wait for comple-
tion of the request. This can be very useful, for example, when the open is on a serial line
and will not complete until an incoming call occurs. The flag is supported by almost all mod-
ern UNIX ports, but it is not defined in POSIX.1. The result is that the definition is carefully
removed if you compile defining -D_POSIX_SOURCE.

You might think that this isn’t a problem, and that you can replace O_NDELAY with the
POSIX.1 flag O_NONBLOCK. Unfortunately, the semantics of O_NONBLOCK vary from those of
O_NDELAY: if no data is available, O_NONBLOCK returns -1, and O_NDELAY returns 0. You can
make the change, of course, but this requires more modifications to the program, and you have
a strraighforward alternative: #undef _POSIX_SOURCE. If you do this, you may find that
suddenly other macros are undefined, for example O_NOCTTY. System V.4 only defines this
variable if _POSIX_SOURCE is set.

There’s no simple solution to this problem. It is caused by messy programming style: the pro-
grammer has mixed symbols defined only by POSIX.1 with those that are not defined in
POSIX.1. The program may run on your current system, but may stop doing so at the next
release.

Conflicts between preprocessor and compiler variables
Occasionally you’ll see things that seem to make absolutely no sense at all. For example,
porting gcc, I once ran into this problem:

gcc -c -DIN_GCC -g -O3 -I. -I. -I./config \
-DGCC_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/include\" \

-DGPLUSPLUS_INCLUDE_DIR=\"/opt/lib/g++-include\" \
-DCROSS_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/sys-include\" \

-DTOOL_INCLUDE_DIR=\"/opt/i386--sysv/include\" \
-DLOCAL_INCLUDE_DIR=\"/usr/local/include\" \
-DSTD_PROTO_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0\" \
./protoize.c

./protoize.c:156: macro ‘puts’ used without args

Looking at this part of protoize.c, I found lots of external definitions:

extern int fflush ();
extern int atoi ();
extern int puts ();
extern int fputs ();
extern int fputc ();
extern int link ();
extern int unlink ();

5 February 2005 02:09

86

Line 156 is, not surprisingly, the definition of puts. But this is a definition, not a call, and
certainly not a macro. And why didn’t it complain about all the other definitions? There were
many more than shown here.

In cases like this, it’s good to understand the way the compiler works — we’ll look at this in
more detail in Chapter 20, Compilers, on page 348. At the moment, we just need to recall that
programs are compiled in two stages: first, the preprocessor expands all preprocessor defini-
tions and macros, and then the compiler itself compiles the resultant output, which can look
quite different.

If you encounter this kind of problem, there’s a good chance that the compiler is not seeing
what you expect it to see. You can frequently solve this kind of riddle by examining the view
of the source that the compiler sees, the output of the preprocessor. In this section, we’ll look
at the technique I used to solve this particular problem.

All compilers will allow you to run the preprocessor separately from the compiler, usually by
specifying the -E option — see your compiler documentation for more details. In this case, I
was running the compiler in an xterm*, so I was able to cut and paste the complete 8-line com-
piler invocation as a command to the shell, and all I needed to type was the text in bold face:

$ gcc -c -DIN_GCC -g -O3 -I. -I. -I./config \
-DGCC_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/include\" \

-DGPLUSPLUS_INCLUDE_DIR=\"/opt/lib/g++-include\" \
-DCROSS_INCLUDE_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0/sys-include\" \

-DTOOL_INCLUDE_DIR=\"/opt/i386--sysv/include\" \
-DLOCAL_INCLUDE_DIR=\"/usr/local/include\" \
-DSTD_PROTO_DIR=\"/opt/lib/gcc-lib/i386--sysv/2.6.0\" \
./protoize.c -E -o junk.c

$

If you don’t hav e xterm, you can do the same sort of thing by editing the make log (see Chap-
ter 5, Building the package, page 60), which will contain the invocation as well.

junk.c starts with:

1 "./config.h" 1

1 "./config/i386/xm-i386.h" 1
40 empty lines
1 "./tm.h" 1
19 empty lines
1 "./config/i386/gas.h" 1
22 empty lines

This file seems to consist mainly of empty lines, and the lines that aren’t empty don’t seem to
be C! In fact, the # lines are C (see the line directive in Chapter 20, Compilers, page 344),
except that in this case the keyword line has been omitted. The empty lines are where com-
ments and preprocessor directives used to be. The error message referred to line 156 of pro-
toize.c, so I searched for lines with protoize.c on them. I found a number of them:

* xterm is a terminal emulator program that runs under X11. If you don’t use X11, you should—for
example, it makes this particular technique much easier.

5 February 2005 02:09

Chapter 6: Running the compiler 87

$ grep protoize.c junk.c
1 "./protoize.c"
39 "./protoize.c" 2
59 "./protoize.c" 2
62 "./protoize.c" 2
63 "./protoize.c" 2
... etc
78 "./protoize.c" 2
222 "./protoize.c"

Clearly, the text was between lines 78 and 222. I positioned on the line after the marker for
line 78 and moved down (156 - 78) or 78 lines. There I found:

extern int fflush ();
extern int atoi ();
extern int ((fputs((), stdout) || ((stdout)->__bufp < (stdout)->__put_limit
? (int) (unsigned char) (*(stdout)->__bufp++ = (unsigned char) (’0))
:__flshfp ((stdout), (unsigned char) (’0))) == (-1)) ? (-1) : 0) ;
extern int fputs ();
extern int fputc ();
extern int link ();
extern int unlink ();

Well, at any rate this made it clear why the compiler was complaining. But where did this
junk come from? It can be difficult to figure this out. With gcc you can use the -dD option to
keep the preprocessor definitions—unfortunately, the compiler still removes the other pre-
processor directives. I used -dD as well, and found in junk.c:

491 "/opt/include/stdio.h" 2
25 lines missing
extern int fputs (__const char *__s, FILE *__stream) ;
/* Write a string, followed by a newline, to stdout. */
extern int puts (__const char *__s) ;

#define puts(s) ((fputs((s), stdout) || __putc(’0, stdout) == EOF) ? EOF : 0)

This looks strange: first it declares puts as an external function, then it defines it as a macro.
Looking at the original source of stdio.h, I found:

/* Write a string, followed by a newline, to stdout. */
extern int puts __P ((__const char *__s));

#ifdef __OPTIMIZE__
#define puts(s) ((fputs((s), stdout) || __putc(’0, stdout) == EOF) ? EOF : 0)
#endif /* Optimizing. */

No, this doesn’t make sense — it’s a real live bug in the header file. At the very least, the dec-
laration of puts () should have been in an #else clause. But that’s not the real problem: it
doesn’t worry the preprocessor, and the compiler doesn’t see it. The real problem is that pro-
toize.c is trying to do the work of the header files and define puts again. There are many pro-
grams that try to out-guess header files: this kind of definition breaks them all.

There are at least two ways to fix this problem, both of them simple. The real question is,
what is the Right Thing? System or library header files should be allowed to define macros

5 February 2005 02:09

88

instead of functions if they want, and an application program has no business trying to do the
work of the header files, so it would make sense to fix protoize.c by removing all these exter-
nal definitions: apart from this problem, they’re also incompatible with ANSI C, since they
don’t describe the parameters. In fact, I chose to remove the definition from the header file,
since that way I only had to do the work once, and in any case, it’s not clear that the definition
really would run any faster.

Preprocessor output usually looks even more illegible than this, particularly if lots of clever
nested #defines hav e been performed. In addition, you’ll frequently see references to non-
existant line numbers. Here are a couple of ways to make it more legible:

• Use an editor to put comments around all the #line directives in the preprocessor out-
put, and then recompile. This will make it easier to find the line in the preprocessor out-
put to which the compiler or debugger is referring; then you can use the comments to fol-
low it back to the original source.

• Run the preprocessor output through a program like indent, which improves legibility
considerably. This is especially useful if you find yourself in the unenviable position of
having to modify the generated sources. indent is not guaranteed to maintain the same
number of lines, so after indenting you should recompile.

Other preprocessors
There are many other cases in which the source file you use is not the source file that the com-
piler gets. For example, yacc and bison take a grammar file and make a (more or less illegi-
ble) .c file out of it; other examples are database preprocessors like Informix ESQL, which
takes C source with embedded SQL statements and converts it into a form that the C compiler
can compile. The preprocessor’s output is intended to be read by a compiler, not by humans.

All of these preprocessors use lines beginning with # to insert information about the original
line numbers and source files into their output. Not all of them do it correctly: if the pre-
processor inserts extra lines into the source, they can become ambiguous, and you can run into
problems when using symbolic debuggers, where you normally specify code locations by line
number.

Syntax errors
Syntax errors in previously functional programs usually have the same causes as undefined
symbols, but they show their faces in a different way. A favourite one results from omitting
/usr/include/sys/types.h. For example, consider bar.c:

#include <stdio.h>
#ifdef USG
#include <sys/types.h>
#endif

ushort num;
int main (int argc, char *argv [])
{

5 February 2005 02:09

Chapter 6: Running the compiler 89

num = atoi (argv [1]);
printf ("First argument: %d\n", num);
}

If you compile this under BSD/OS, you get:

$ gcc -o bar bar.c
bar.c:6: parse error before ‘num’
bar.c:6: warning: data definition has no type or storage class

There’s an error because ushort hasn’t been defined. The compiler expected a type specifier,
so it reported a syntax error, not an undefined symbol. To fix it, you need to define the type
specified — see Appendix A, Comparative reference to UNIX data types for a list of the more
common type specifiers.

Virtual memory exhausted
You occasionally see this message, particularly when you’re using gcc, which has a particular
hunger for memory. This may be due to unrealistically low virtual memory limits for your
system — by default, some systems limit total virtual memory per process to 6 MB, but gcc
frequently requires 16 or 20 MB of memory space, and on occasion it can use up to 32 MB
for a single compilation. If your system has less than this available, increase the limit accord-
ingly. Don’t forget to ensure that you have enough swap space! Modern systems can require
over 100 MB of swap space.

Sometimes this doesn’t help. gcc seems to have particular difficulties with large data defini-
tions; bit map definitions in X11 programs are the sort of things that cause problems. xphoon,
which displays a picture of the current phase of the moon on the root window, is a good exam-
ple of a gcc-breaker.

Compiler limits exceeded
Some compilers have difficulties with complicated expressions. This can cause cc1, the com-
piler itself, to fail with messages like “expression too complicated” or “out of tree space.” Fix-
ing such problems can be tricky. Straightforward code shouldn’t giv e the compiler indiges-
tion, but some nested #defines can cause remarkable increases in the complexity of expres-
sions: in some cases, a single line can expand to over 16K of text. One way to get around the
problem is to preprocess the code and then break the preprocessed code into simpler expres-
sions. The indent program is invaluable here: preprocessor output is not intended to be
human-readable, and most of the time it isn’t.

Running compiler passes individually
Typical compilers run four distinct passes to compile and link a program—see Chapter 20,
Compilers, page 348, for more details. Sometimes running the passes separately can be useful
for debugging a compilation:

5 February 2005 02:09

90

• If you find yourself with header files that confuse your preprocessor, you can run a differ-
ent preprocessor, collect the output and feed it to your compiler. Since the output of the
preprocessor is not machine-dependent, you could even do this on a different machine
with different architecture, as long as you ensure that you use the correct system header
files. By convention, the preprocessor output for foo.c would be called foo.i—see Chap-
ter 20, Compilers, page 348 for a list of intermediate file suffixes — though it usually
does no harm if you call it foo.c and pass it through the preprocessor again, since there
should no longer be anything for the second preprocessor to do.

• If you want to report a compiler bug, it’s frequently a good idea to supply the preproces-
sor output: the bug might be dependent on some header file conflict that doesn’t exist on
the system where the compiler development takes place.

• If you suspect the compiler of generating incorrect code, you can stop compilation after
the compiler pass and collect the generated assembler output.

Incorrect code from compiler
Compilers sometimes generate incorrect code. Incorrect code is frequently difficult to debug
because the source code looks (and might be) perfect. For example, a compiler might gener-
ate an instruction with an incorrect operand address, or it might assign two variables to a sin-
gle location. About the only thing you can do here is to analyze the assembler output.

One kind of compiler bug is immediately apparent: if the code is so bad that the assembler
can’t assemble it, you get messages from the assembler. Unfortunately, the message doesn’t
usually tell you that it comes from the assembler, but the line numbers change between the
compiler and the assembler. If the line number seems completely improbable, either because
it is larger than the number of lines in your source file, or because it seems to have nothing to
do with the context of that line, there is a chance that the assembler produced the message.
There are various ways to confirm which pass of the compiler produced the message. If
you’re using gcc, the simplest one is to use the -v option for the compiler, which “announces”
each pass of compilation as it starts, together with the version numbers and parameters passed
to the pass. This makes it relatively easy to figure out which pass is printing the error mes-
sages. Otherwise you can run the passes individually — see Chapter 20, Compilers, page 348
for more details.

5 February 2005 02:09

