
10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 507

28
XFree86 in depth

In this chapter:
• The problem with

boards and monitors
• X configuration: the

theor y
• XF86Config
• Multiple monitors and

ser vers
• X in the networ k

In this chapter:
• The problem with

boards and monitors
• X configuration: the

theor y
• XF86Config
• Multiple monitors and

ser vers
• X in the networ k

The information in Chapter 6 should be enough to get X up and running. There’s a lot
more to X than that, however, enough to fill many books. In this chapter we’ll look at
some of the more interesting topics:

• The next section describes the technical background of running X displays.

• On page 516 we’ll look at setting up the XF86Config file.

• On page 523 we’ll look at using more than one monitor with X.

• On page 524 we’ll look at using X in a network.

X configuration: the theory
Setting up your XF86Config file normally takes a few minutes, but sometimes you can
run into problems that make grown men cry. In the rest of this chapter, we’ll look at the
technical background:

• How display boards and monitors work.

• How to set up XFree86 to work with your hardware.

• How to tune your hardware for maximum display performance.

• How to fry your monitor.

I mean the last point seriously: conventional wisdom says that you can’t damage
hardware with a programming mistake, but in this case it is possible. Read the section on
how monitors work, and don’t start tuning until you understand the dangers involved.

xtheory.mm,v v4.13 (2003/04/03 03:13:24) 507

508 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 508

How TVs and monitors work
You don’t hav e to be a computer expert to see the similarity between monitors and TVs:
current monitor technology is derived from TV technology, and many older display
boards have modes that can use TVs instead of monitors. Those of us who were on the
microcomputer scene 20 to 25 years ago will remember the joy of getting a computer
display on a portable TV, a ‘‘glass tty’’ connected by a serial line running at 300 or 1200
bps.

There are at least two ways to create pictures on a cathode ray tube: one is derived from
oscilloscopes, where each individual character is scanned by the electron beam, rather
like writing in the sand with your finger. Some early terminals used this technology, but
it has been obsolete for several decades.

TVs and monitors display the picture by scanning equally spaced lines across the entire
screen. Like in a book, the first line starts at the top left of the screen and goes to the top
right. Each successive line starts slightly below the previous line. This continues until
the screen is full. The picture is formed by altering the intensity of the electron beam as
it scans the lines.

To perform this scan, the TV has two deflection units: one scans from left to right, and the
other scans, much more slowly, from top to bottom. Not surprisingly, these units are
called the horizontal and vertical deflection units. You may also encounter the terms line
and frame deflection.

Figure 28-1 shows the resultant pattern.

etc

First scan line
Second scan line

Flyback

Figure 28-1: Scanning pattern on the monitor

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

X configuration: the theory 509

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 509

The tube can only move the electron beam at a finite speed. When the electron beam
reaches the right hand side of the screen, it needs to be deflected back again. This part of
the scan is called the horizontal flyback, and it is not used for displaying picture data.
The actual time that the hardware requires for the flyback depends on the monitor, but it
is in the order of 5% to 10% of the total line scan time. Similarly, when the vertical
deflection reaches the bottom of the screen, it performs a vertical flyback, which is also
not used for display purposes.

It’s not enough to just deflect, of course: somehow you need to ensure that the scanning is
synchronized with the incoming signal, so that the scan is at the top of the screen when
the picture information for the top of the screen arrives. You’ve seen what happens when
synchronization doesn’t work: the picture runs up and down the screen (incorrect vertical
synchronization) or tears away from the left of the screen (incorrect horizontal
synchronization). Synchronization is achieved by including synchronization pulses in the
horizontal and vertical flyback periods. They hav e a voltage level outside the normal
picture data range to ensure that they are recognized as synchronization pulses.

As if that wasn’t enough, the video amplifier, the part of the TV that alters the intensity of
the spot as it travels across the screen, needs time to ensure that the flyback is invisible,
so there are brief pauses between the end of the line and the start of the sync pulse, and
again between the end of the sync pulse and the beginning of the data. This process is
called blanking, and the delays are called the front porch (before the sync pulse) and the
back porch (after the sync pulse). Figure 28-2 depicts a complete scan line.

Sync pulse Back porch Front porch Sync pulse

Picture data

(Reference point) HDE SHR EHR HTRegisters:

Figure 28-2: Scan line and register values

The register information at the bottom of the picture refers to the video controller
registers. We’ll look at how to interpret them on page 511.

That, in a nutshell, is how horizontal deflection works. Vertical deflection works in
almost the same way, just slower, with one minor exception. This basic display
mechanism was developed for TVs in the 1930s, at a time when terms like high-tech (or

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

510 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 510

ev en electronics) hadn’t even been invented, and even today we’re stuck with the low data
rates that they decided upon in those days. Depending on the country, conventional TVs
display only 25 or 30 frames (pages of display) per second. This would cause an
unpleasant flicker in the display. This flicker is minimized with a trick called interlacing:
instead of displaying the frame in one vertical scan, the odd and even lines are displayed
in two alternating half frames, which doubles the apparent vertical frequency.

How monitors differ from TVs
So how do we apply this to computer displays? Let’s look at the US standard NTSC
system—the international PAL and SECAM systems are almost identical except for the
number of lines and a minor difference in the frequencies. NTSC specifies 525 lines, but
that includes the vertical flyback time, and in fact only about 480 lines are visible. The
aspect ratio of a normal TV is 4:3, in other words the screen is one-third wider than it is
high, so if we want square pixels,1 we need to have one-third more pixels per line. This
means that we can display 640 pixels per line on 480 lines.2 This resolution is normally
abbreviated to ‘‘640x480.’’ PAL and SECAM have lower vertical frequencies, which
allows a nominal 625 lines, of which about 600 are displayed. Either way, these values
have two huge disadvantages: first, the resolution is barely acceptable for modern
graphics displays, and secondly they are interlaced displays. Older PC display hardware,
such as the CGA and some EGA modes, was capable of generating these signal
frequencies, but normal graphic cards can no longer do it. Instead, dedicated TV output
cards are available if that’s what you want to do.

The first problem is interlace: it works reasonably for TVs, but it’s a pain for computer
displays—there’s still more flicker than a real 50 Hz or 60 Hz display. Modern display
boards can still run in interlace mode, but don’t even think about doing so unless you’re
forced to—the resultant picture looks out of focus and is very tiring to read.

The second problem is the resolution: nowadays, 1024x768 is a minimum resolution, and
some monitors display up to 2048x1536 pixels. On the other hand, even 60 Hz refresh
rate is barely adequate: read any marketing literature and you’ll discover that 72 Hz is the
point at which flicker suddenly disappears. To get high-resolution, high refresh rate
displays, you need some very high internal frequencies—we’ll look at that further down.

How to fry your monitor
Remember that a monitor is just a glorified TV? Well, one of the design constraints of
real TVs is that they hav e only a single horizontal frequency and only a single vertical
frequency. This simplifies the hardware design considerably: the horizontal deflection
uses a tuned circuit to create both the deflection frequency and the high voltage required
to run the tube. This circuit is comprised of a transformer (the line transformer) and a
condenser. Run a line transformer even fractionally off its intended frequency and it runs
much less efficiently and use more current, which gets converted to heat. If you run a
conventional monitor off spec for any length of time, it will burn out the line transformer.

1. A square pixel is one with the same height and width. They don’t hav e to be that way, but it makes graphics
software much simpler.

2. Does this look familiar?

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

X configuration: the theory 511

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 511

You don’t hav e to roll your own X configuration to burn out the monitor: 20 years ago,
the standard display boards were CGAs and HDAs,1 and they had different horizontal
frequencies and thus required different monitors. Unfortunately, they both used the same
data connector. If you connected an HDA (18.43 kHz horizontal frequency) to a CGA
monitor (15.75 kHz, the NTSC line frequency), you would soon see smoke signals.

All modern PC monitors handle at least a range of horizontal frequencies. This doesn’t
mean that an out of spec signal can’t damage them—you might just burn out something
else, frequently the power supply. Most better monitors recognize out-of-spec signals
and refuse to try to display them; instead, you get an error display. Unfortunately, there
are plenty of other monitors, especially older or cheaper models, which don’t protect
themselves against out of spec signals. In addition, just because the monitor displays
correctly doesn’t mean that it is running in spec. The moral of the story:

Never run your monitor out of spec. If your display is messed
up, there’s a good chance that the frequencies are out, so turn
off the monitor.

Monitors aren’t the only thing that you can burn out, of course. If you try hard, you can
also burn out chips on some display boards by running them at frequencies that are out of
spec. In practice, though, this doesn’t happen nearly as often.

Another difference between TVs and monitors is the kind of signal they take. A real TV
includes a receiver, of course, so you have an antenna connection, but modern TVs also
have connections for inputs from VCRs, which are usually two audio signals and a video
signal. The video signal contains five important components: the red, green and blue
signals, and the horizontal and vertical sync pulses. This kind of signal is called
composite video. By contrast, most modern monitors separate these signals onto separate
signal lines, and older boards, such as the EGA, even used several lines per colour.
Unfortunately, there is no complete agreement about how these signals should work: the
polarity of the sync pulses can vary, and some boards cheat and supply the sync pulses on
the green signal line. This is mainly of historical interest, but occasionally you’ll come
across a real bargain 20" monitor that only has three signal connections, and you may not
be able to get it to work—this could be one of the reasons.

The CRT controller
The display controller, usually called a CRT (Cathode Ray Tube) controller, is the part of
the display board that creates the signals we’ve just been talking about. Early display
controllers were designed to produce signals that were compatible with TVs: they had to
produce a signal with sync pulses, front and back porches, and picture data in between.
Modern display controllers can do a lot more, but the principles remain the same.

The first part of the display controller creates the framework we’re looking for: the
horizontal and vertical sync pulses, blanking and picture information, which is
represented as a series of points or dots. To count, we need a pulse source, which also

1. Color Graphics Adapter and Hercules Display Adapter.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

512 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 512

determines the duration of individual dots, so it is normally called a dot clock. For
reasons lost in history, CRT controllers start counting at the top left of the display, and not
at the vertical sync pulse, which is the real beginning of the display. To define a line to
the horizontal deflection, we need to set four CRTC registers to tell it—see the diagram
on page 509:

• The Horizontal Display End register (HDE) specifies how many dots we want on
each line. After the CRTC has counted this many pixels, it stops outputting picture
data to the display.

• The Start Horizontal Retrace register (SHR) specifies how many dot clock pulses
occur before the sync pulse starts. The difference between the contents of this
register and the contents of the HDE register defines the length of the front porch.

• The End Horizontal Retrace register (EHR) defines the end of the sync pulse. The
width of the sync pulse is the difference between the contents of this register and the
SHR register.

• The Horizontal Total register (HT) defines the total number of dot clocks per line.
The width of the back porch is the difference between the contents of this register and
the EHR register.

In addition, the Start Horizontal Blanking and End Horizontal Blanking registers (SHB
and EHB) define when the video signals are turned off and on. The server sets these
registers automatically, so we don’t need to look at them in more detail.

The control of the vertical deflection is similar. In this case, the registers are Vertical
Display End (VDE), Start Vertical Retrace (SVR), End Vertical Retrace (EVR), Vertical
Total (VT), Start Vertical Blanking (SVB), and End Vertical Blanking (EVB). The values
in these registers are counted in lines.

VGA hardware evolved out of older 8 bit character-based display hardware, which
counted lines in characters, not dot clocks. As a result, all of these registers are 8 bits
wide. This is adequate for character displays, but it’s a problem when counting dots: the
maximum value you can set in any of these registers is 255. The designers of the VGA
resorted to a number of nasty kludges to get around this problem: the horizontal registers
count in groups of 8 dot clocks, so they can represent up to 2048 dot clocks. The vertical
registers overflow into an overflow register. Even so, the standard VGA can’t count
beyond 1024 lines. Super VGAs vary in how they handle this problem, but typically they
add additional overflow bits. To giv e you an idea of how clean the VGA design is,
consider the way the real Vertical Total (total number of lines on the display) is defined
on a standard VGA. It’s a 10 bit quantity, but the first 8 bits are in the VT register, the 9th
bit is in bit 0 of the overflow register, and the 10th bit is in bit 5 of the overflow register.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

X configuration: the theory 513

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 513

The XF86Config mode line
One of the steps in setting up XFree86 is to define these register values. Fortunately, you
don’t hav e to worry about which bits to set in the overflow register: the mode lines count
in dots, and it’s up to the server to convert the dot count into something that the display
board can understand. A typical Mode line looks like:

Modeline "640x480a" 28 640 680 728 776 480 480 482 494

These ten values are required. In addition, you may specify modifiers at the end of the
line. The values are:

• A label for the resolution line. This must be enclosed in quotation marks, and is used
to refer to the line from other parts of the XF86Config file. Traditionally, the label
represents the resolution of the display mode, but it doesn’t hav e to. In this example,
the resolution really is 640x480, but the a at the end of the label is a clue that it’s an
alternative value.

• The clock frequency, 28 MHz in this example.

• The Horizontal Display End, which goes into the HDE register. This value and all
that follow are specified in dots. The server mangles them as the display board
requires and puts them in the corresponding CRTC register.

• The Start Horizontal Retrace (SHR) value.

• The End Horizontal Retrace (EHR) value.

• The Horizontal Total (HT) value.

• The Vertical Display End (VDE) value. This value and the three following are
specified in lines.

• The Start Vertical Retrace (SVR) value.

• The End Vertical Retrace (EVR) value.

• The Vertical Total (VT) value.

This is pretty dry stuff. To make it easier to understand, let’s look at how we would set a
typical VGA display with 640x480 pixels. Sure, you can find values for this setup in any
release of XFree86, but that doesn’t mean that they’re the optimum for your system. We
want a non-flicker display, which we’ll take to mean a vertical frequency of at least 72
Hz, and of course we don’t want interlace. Our monitor can handle any horizontal
frequency between 15 and 40 kHz: we want the least flicker, so we’ll aim for 40 kHz.

First, we need to create our lines. They contain 640 pixels, two porches and a sync pulse.
The only value we really know for sure is the number of pixels. How long should the
porches and the sync pulses be? Good monitor documentation should tell you, but most
monitor manufacturers don’t seem to believe in good documentation. The documented
values vary significantly from monitor to monitor, and even from mode to mode: they’re
not as critical as they look. Here are some typical values:

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

514 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 514

Horizontal sync pulse: 1 to 4 µs, front porch 0.18 to 2.1 µs, back porch 1.25 to 3.56 µs.

As we’ll see, the proof of these timing parameters is in the display. If the display looks
good, the parameters are OK. I don’t know of any way to damage the monitor purely by
modifying these parameters, but there are other good reasons to stick to this range. As a
rule of thumb, if you set each of the three values to 2 µs to start with, you won’t go too far
wrong. Alternatively, you could start with the NTSC standard values: the standard
specifies that the horizontal sync pulse lasts for 4.2 to 5.1 µs, the front porch must be at
least 1.27 µs. NTSC doesn’t define the length of the back porch—instead it defines the
total line blanking, which lasts for 8.06 to 10.3 µs. For our purposes, we can consider the
back porch to be the length of the total blanking minus the lengths of the front porch and
the sync pulse. If you take values somewhere in the middle of the ranges, you get a front
porch of 1.4 µs, a sync pulse of 4.5 µs, and total blanking 9 µs, which implies a back
porch of 9 - 1.4 - 4.5 = 3.1 µs.

For our example, let’s stick to 2 µs per value. We hav e a horizontal frequency of 40 kHz,
or 25 µs per line. After taking off our 6 µs for flyback control, we have only 19 µs left for
the display data. To get 640 pixels in this time, we need one pixel every 19 ÷ 640 µs, or
about 30 ns. This corresponds to a frequency of 33.6 MHz. This is our desired dot clock.

The next question is: do we have a dot clock of this frequency? Maybe. This should be
in your display board documentation, but I’ll take a bet that it’s not. Never mind, the
XFree86 server is clever enough to figure this out for itself. At the moment, let’s assume
that you do have a dot clock of 33 MHz.

If you don’t hav e a suitable clock, you’ll have to take the next lower clock frequency that you do
have: you can’t go any higher, since this example assumes the highest possible horizontal
frequency.

You now need to calculate four register values to define the horizontal lines:

• The first value is the Horizontal Display End, the number of pixels on a line. We
know this one: it’s 640.

• You calculate SHR by adding the number of dot clocks that elapse during the front
porch to the value of HDE. Recall that we decided on a front porch of 2 µs. In this
time, a 33 MHz clock counts 66 cycles. So we add 66, right? Wrong. Remember
that the VGA registers count in increments of 8 pixels, so we need to round the width
of the front porch to a multiple of 8. In this case, we round it to 64, so we set SHR to
640 + 64 = 704.

• The next value we need is EHR, which is SHR plus the width of the horizontal
retrace, again 64 dot clocks, so we set that to 704 + 64 = 768.

• The final horizontal value is HT. Again, we add the front porch—64 dot clocks—to
EHR and get 768 + 64 = 832.

At this point, our vestigial mode line looks like:

Modeline "640x480" 28 640 704 768 832

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

X configuration: the theory 515

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 515

Next, we need another four values to define the vertical scan. Again, of the four values
we need, we only know the number of lines. How many lines do we use for the porches
and the vertical sync? As we’ve seen, NTSC uses about 45 lines for the three combined,
but modern monitors can get by with much less. Again referring to the Multisync
manual, we get a front porch of betwwen 0.014 and 1.2 ms, a sync pulse of between 0.06
and 0.113 ms, and a back porch of between 0.54 and 1.88 ms. But how many lines is
that?

To figure that out, we need to know our real horizontal frequency. We were aiming at 40
kHz, but we made a couple of tradeoffs along the way. The real horizontal frequency is
the dot clock divided by the horizontal total, in this case 33 MHz ÷ 832, which gives us
39.66 kHz—not too bad. At that frequency, a line lasts 1÷39660 seconds, or just over 25
µs, so our front porch can range between ½ and 48 lines, our sync pulse between 2 and 5
lines, and the back porch between 10 and 75 lines. Do these timings make any sense?
No, they don’t—they’re just values that the monitor can accept.

To get the highest refresh rate, we can go for the lowest value in each case. It’s difficult
to specify a value of ½, so we’ll take a single line front porch. We’ll take two lines of
sync pulse and 10 lines of back porch. This gives us:

• VDE is 480.

• SVR is 481.

• EVR is 483.

• VT is 493.

Now our mode line is complete:

Modeline "640x480" 28 640 704 768 832 480 481 483 493

Now we can calculate our vertical frequency, which is the horizontal frequency divided
by the Vertical Total, or 39.66 ÷ 493 kHz, which is 80.4 Hz—that’s not bad either. By
comparison, if you use the default value compiled into the server, you get a horizontal
frequency of 31.5 kHz and a vertical frequency of only 60 Hz.

If you know the technical details of your monitor and display board, it really is that
simple. This method doesn’t require much thought, and it creates results that work.

Note that the resultant mode line may not work on other monitors. If you are using a
laptop that you want to connect to different monitors or overhead display units, don’t use
this method. Stick to the standard frequencies supplied by the X server. Many overhead
projectors understand only a very small number of frequencies, and the result of using a
tweaked mode line is frequently that you can’t synchronize with the display, or that it cuts
off a large part of the image.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

516 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 516

XF86Config
The main configuration file for XFree86 is called XF86Config. It has had a long and
varied journey through the file system. At the time of writing, it’s located at
/usr/X11R6/lib/X11/XF86Config, but previously it has been put in /etc/X11/XF86Config,
/etc/XF86Config or /usr/X11R6/etc/X11/XF86Config, and the server still looks for it in
many of these places. If you’re upgrading a system, you should ensure that you don’t
have old configuration files in one of the alternative places.

As we saw on page 102, there are a couple of ways to automatically create an
XF86Config file. On that page we saw how to do it with xf86cfg. An alternative way is
to run the X server in configuration mode:

X -configure
XFree86 Version 4.2.0 / X Window System
(protocol Version 11, revision 0, vendor release 6600)
Release Date: 18 January 2002

If the server is older than 6-12 months, or if your card is
newer than the above date, look for a newer version before
reporting problems. (See http://www.XFree86.Org/)

Build Operating System: FreeBSD 5.0-CURRENT i386 [ELF]
Module Loader present
Markers: (--) probed, (**) from config file, (==) default setting,

(++) from command line, (!!) notice, (II) informational,
(WW) warning, (EE) error, (NI) not implemented, (??) unknown.

(==) Log file: "/var/log/XFree86.0.log", Time: Sat Apr 6 13:51:10 2002
List of video drivers:

atimisc
(the list is long, and will change; it’s omitted here)
(++) Using config file: "/root/XF86Config.new"

Your XF86Config file is /root/XF86Config.new

To test the server, run ’XFree86 -xf86config /root/XF86Config.new’

Note that X does not place the resultant configuration file in the default location. The
intention is that you should test it first and then move it to the final location when you’re
happy with it. As generated above, it’s good enough to run XFree86, but you’ll possibly
want to change it. For example, it only gives you a single resolution, the highest it can
find. In this section we’ll look at the configuration file in more detail, and how to change
it.

XF86Config is divided into several sections, as shown in Table 28-1. We’ll look at them
in the order they appear in the generated XF86Config file, which is not the same order as
in the man page.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

XF86Config 517

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 517

Table 28-1: XF86Config sections

Section Description
ServerLayout Describes the overall layout of the X configuration. X can handle more

than one display card and monitor. This section is the key to the other
sections

Files Sets the default font and RGB paths.

ServerFlags Set some global options.

Module Describes the software modules to load for the configuration.

InputDevice Sets up keyboards, mice and other input devices.

Monitor Describes your monitor to the server.

Device Describes your video hardware to the server.

Screen Describes how to use the monitor and video hardware.

The server layout
The ServerLayout section describes the relationships between the individual hardware
components under the control of an X server. For typical hardware, X -configure
might generate:

Section "ServerLayout"
Identifier "XFree86 Configured"
Screen 0 "Screen0" 0 0
InputDevice "Mouse0" "CorePointer"
InputDevice "Keyboard0" "CoreKeyboard"

EndSection

This shows that the server has one screen and two input devices. The names Mouse0 and
Keyboard0 suggest that they’re a mouse and a keyboard, but any name is valid. These
entries are pointers to sections elsewhere in the file, which must contain definitions for
Screen0, Mouse0 and Keyboard0.

Normally you only have one screen, one mouse and one keyboard, so this section might
seem rather unnecessary. As we will see when we look at multiple monitor
configurations, it’s quite important to be able to describe these relationships.

The Files section
The Files section of the XF86Config file contains the path to the RGB database file,
which should never need to be changed, and the default font path. You may want to add
more font paths, and some ports do so: the FontPath lines in your XF86Config are
concatenated to form a search path. Ensure that each directory listed exists and is a valid
font directory.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

518 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 518

The standard Files section looks like:

Section "Files"
RgbPath "/usr/X11R6/lib/X11/rgb"
ModulePath "/usr/X11R6/lib/modules"
FontPath "/usr/X11R6/lib/X11/fonts/misc/"
FontPath "/usr/X11R6/lib/X11/fonts/Speedo/"
FontPath "/usr/X11R6/lib/X11/fonts/Type1/"
FontPath "/usr/X11R6/lib/X11/fonts/CID/"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"
FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"

EndSection

If you are running a high-resolution display, this sequence may be sub-optimal. For
example, a 21" monitor running at 1600x1200 pixels has a visible display of
approximately 16" wide and 12" high, exactly 100 dpi (dots per inch, really pixels per
inch). As a result, you’ll probably be happier with the 100 dpi fonts. You can change
this by swapping the last two lines in the section:

FontPath "/usr/X11R6/lib/X11/fonts/100dpi/"
FontPath "/usr/X11R6/lib/X11/fonts/75dpi/"

EndSection

Don’t just remove the 75 dpi fonts: some fonts may be available only in the 75 dpi
directory.

Sometimes the server complains:

Can’t open default font ’fixed’

This is almost certainly the result of an invalid entry in your font path. Try running
mkfontdir in each directory if you are certain that each one is correct. The XF86Config
man page describes other parameters that may be in this section of the file.

The ServerFlags section
The ServerFlags section allows you to specify a number of global options. By default it
is not present, and you will probably not find any reason to set it. See the man page
XF86Config(5) for details of the options.

The Module section
The Module section describes binary modules that the server loads:

Section "Module"
Load "extmod"
Load "xie"
Load "pex5"
Load "glx"
Load "GLcore"
Load "dbe"
Load "record"
Load "type1"

EndSection

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

XF86Config 519

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 519

We won’t look at modules in more detail; see the XFree86 documentation.

The InputDevice section
The InputDevice section specifies each input device, typically mice and keyboards. Older
versions of XFree86 had separate Mouse and Keyboard sections to describe these details.
The default XF86Config looks something like this:

Section "InputDevice"
Identifier "Keyboard0"
Driver "keyboard"

EndSection

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "auto"
Option "Device" "/dev/mouse"

EndSection

There’s not much to be said for the keyboard. Previous versions of XFree86 allowed you
to set things like NumLock handling and repeat rate, but the former is no longer needed,
and the latter is easier to handle with the xset program.

Mice are still not as standardized as keyboards, so you still need a Protocol line and a
device name. The defaults shown here are correct for most modern mice; the mouse
driver can detect the mouse type correctly. If you’re using the mouse daemon, moused,
change this entry to the moused device, /dev/sysmouse.

If you’re using a serial mouse or one with only two buttons, and if you’re not using
moused, you need to change the device entries and specify the Emulate3Buttons
option. That’s all described in the man page, but in general it’s easier to use moused.

The Monitor section
Next comes the description of the monitor. Modern monitors can identify themselves to
the system. In that case, you get a section that looks like this:

Section "Monitor"
Identifier "Monitor0"
VendorName "IBM"
ModelName "P260"
HorizSync 30.0 - 121.0
VertRefresh 48.0 - 160.0

This tells the server that the monitor is an IBM P260, that it can handle horizontal
frequencies between 30 kHz and 121 kHz, and vertical frequencies between 48 Hz and
160 Hz. Less sophisticated monitors don’t supply this information, so you might end up
with an entry like this:

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

520 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 520

Section "Monitor"
Identifier "Monitor0"
VendorName "Monitor Vendor"
ModelName "Monitor Model"

EndSection

This may seem like no information at all, but in fact it does give the identifier. Before
you use it, you should add at least the horizontal and vertical frequency range, otherwise
the server assumes it’s a standard (and obsolete) VGA monitor capable of only 640x480
resolution.

This is also the place where you can add mode lines. For example, if you have created a
mode line as described in the first part of this chapter, you should add it here:

Section "Monitor"
Identifier "right"
VendorName "iiyama"
ModelName "8221T"
HorizSync 24.8 - 94.0
VertRefresh 50.0 - 160.0

ModeLine "640x480" 73 640 672 768 864 480 488 494 530
62 Hz!
ModeLine "800x600" 111 800 864 928 1088 600 604 610 640
143 Hz
ModeLine "1024x768" 165 1024 1056 1248 1440 768 771 781 802
96 Hz
ModeLine "1280x1024" 195 1280 1312 1440 1696 1024 1031 1046 1072 -hsync -vsync
76 Hz
ModeLine "1600x1200" 195 1600 1616 1808 2080 1200 1204 1207 1244 +hsync +vsync
56 Hz!
ModeLine "1920x1440" 200 1920 1947 2047 2396 1440 1441 1444 1483 -hsync +vsync
61 Hz
ModeLine "1920x1440" 220 1920 1947 2047 2448 1440 1441 1444 1483 -hsync +vsync

EndSection

It’s possible to have multiple mode lines for a single frequency, and this even makes
sense. The examples for 1920x1440 above hav e different pixel clocks. If you use this
monitor with a card with a pixel clock that only goes up to 200 MHz, the server chooses
the first mode line. If you use a card with up to 250 MHz pixel clock, it uses the second
and gets a better page refresh rate.

The X server has a number of built-in mode lines, so it’s quite possible to have a
configuration file with no mode lines at all. The names correspond to the resolutions, and
there can be multiple mode lines with the same name. The server chooses the mode line
with the highest frequency compatible with the hardware.

The Device section
The Device section describes the video display board:

Section "Device"
Available Driver options are:-
Values: <i>: integer, <f>: float, <bool>: "True"/"False",
<string>: "String", <freq>: "<f> Hz/kHz/MHz"
[arg]: arg optional
#Option "SWcursor" # [<bool>]
#Option "HWcursor" # [<bool>]

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

XF86Config 521

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 521

#Option "PciRetry" # [<bool>]
#Option "SyncOnGreen" # [<bool>]
#Option "NoAccel" # [<bool>]
#Option "ShowCache" # [<bool>]
#Option "Overlay" # [<str>]
#Option "MGASDRAM" # [<bool>]
#Option "ShadowFB" # [<bool>]
#Option "UseFBDev" # [<bool>]
#Option "ColorKey" # <i>
#Option "SetMclk" # <freq>
#Option "OverclockMem" # [<bool>]
#Option "VideoKey" # <i>
#Option "Rotate" # [<str>]
#Option "TexturedVideo" # [<bool>]
#Option "Crtc2Half" # [<bool>]
#Option "Crtc2Ram" # <i>
#Option "Int10" # [<bool>]
#Option "AGPMode" # <i>
#Option "DigitalScreen" # [<bool>]
#Option "TV" # [<bool>]
#Option "TVStandard" # [<str>]
#Option "CableType" # [<str>]
#Option "NoHal" # [<bool>]
#Option "SwappedHead" # [<bool>]
#Option "DRI" # [<bool>]
Identifier "Card0"
Driver "mga"
VendorName "Matrox"
BoardName "MGA G200 AGP"
BusID "PCI:1:0:0"

EndSection

This example shows a Matrox G200 AGP display board. It includes a number of options
that you can set by removing the comment character (#). Many of these options are
board dependent, and none of them are required. See the X documentation for more
details.

Note particularly the last line, BusID. This is a hardware-related address that tells the X
server where to find the display board. If you move the board to a different PCI slot, the
address will probably change, and you will need to re-run X -configure to find the new
bus ID.

If your display board is older, much of this information will not be available, and you’ll
have to add it yourself. Unlike older monitors, it’s hardly worth worrying about older
boards, though: modern boards have become extremely cheap, and they’re so much faster
than older boards that it’s not worth the trouble.

The Screen section
The final section is the Screen section, which describes the display on a monitor. The
default looks something like this:

Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
SubSection "Display"

Depth 1
EndSubSection
SubSection "Display"

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

522 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 522

Depth 4
EndSubSection
SubSection "Display"

Depth 8
EndSubSection
SubSection "Display"

Depth 15
EndSubSection
SubSection "Display"

Depth 16
EndSubSection
SubSection "Display"

Depth 24
EndSubSection

EndSection

The first three lines describe the relationship between the screen display, the video board
that creates it, and the monitor on which it is displayed. Next come a number of
subsections describing the possible bit depths that the screen may have. For each display
depth, you can specify which mode lines you wish to use. Modern display hardware has
plenty of memory, so you’ll probably not want to restrict the display depth. On the other
hand, you may want to have multiple mode lines. Your display card and monitor are
good enough to display 2048x1536 at 24 bits per pixel, but occasionally you’ll get images
(in badly designed web pages, for example) so miniscule that you’ll want to zoom in,
maybe going all the way back to 640x480 in extreme cases. You can toggle through the
available resolutions with the key combinations Ctrl-Alt-Numeric + and Ctrl-Alt-
Numeric -. You’re probably not interested in pixel depths lower than 640x480, so your
Screen section might look like:

Section "Screen"
Identifier "Screen0"
Device "Card0"
Monitor "Monitor0"
DefaultDepth 24
SubSection "Display"

Depth 24
Modes "2048x1536" "1600x1200" "1024x768" "640x480"

EndSubSection
EndSection

This section includes a DefaultDepth entry for the sake of example. In this case, it’s
not strictly needed, because there’s only one pixel depth. If there were more than one
Display subsection, it would tell xinit which depth to use by default.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

XF86Config 523

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 523

Multiple monitors and servers
We’v e seen above that X provides for more than one monitor per server. If you have
multiple display cards and monitors, let the server generate the XF86Config file: it
generates a file that supports all identified devices. The resultant server layout section
might look like this:

Section "ServerLayout"
Identifier "XFree86 Configured"
Screen 0 "Screen0" 0 0
Screen 1 "Screen1" RightOf "Screen0"
Screen 2 "Screen2" RightOf "Screen1"
InputDevice "Mouse0" "CorePointer"
InputDevice "Keyboard0" "CoreKeyboard"

EndSection

The file will also have multiple monitor, device and screen sections. The server can’t
know about the real physical layout of the screen, of course, so you may have to change
the ordering of the screens. When you run the server without any other specifications, it
is assigned server number 0, so these screens will be numbered :0.0, :0.1 and :0.2.

Multiple servers
It’s also possible to run more than one X server on a single system, even if it only has a
single monitor. There can be some good reasons for this: you may share a system
amongst your family members, so each of them can have their own server. Alternatively,
you may have a laptop with a high-resolution display and need to do a presentation on
overhead projectors that can’t handle more than 1024x768 pixels. It’s not practical to
simply switch to a lower resolution, because the overall screen size doesn’t change, and
it’s difficult to avoid sliding the image around when you move the cursor.

For each server, you require one virtual terminal—see page 109 for more details. If
you’re using the same hardware, you can also use the same XF86Config file. The only
difference is in the way in which you start the server. For example, you could start three
X servers, one with the fvwm2 window manager, one with KDE and one with GNOME,
with the following script:

xinit &
xinit .xinitrc-kde -- :1 &
xinit .xinitrc-gnome -- :2 -xf86config XF86Config.1024x768 &

Due to different command line options, you must use xinit here, and not startx. The first
xinit starts a server with the default options: it reads its commands from .xinitrc, it has
the server number 0, and it reads its configuration from the default XF86Config file. The
second server reads its commands from .xinitrc-kde, it has the server number 1, and it
reads its configuration from the default XF86Config file. The third server reads its
commands from .xinitrc-gnome, it has the server number 2, and the configuration file is
XF86Config.1024x768. Assuming that you reserve virtual terminals /dev/ttyv7,
/dev/ttyv8 and /dev/ttyv9 for the servers, you can switch between them with the key
combinations Ctrl-Alt-F8, Ctrl-Alt-F9 and Ctrl-Alt-F10.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

524 Chapter 28: XFree86 in depth

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 524

X in the network
X is a network protocol. So far we have looked at the server. The clients are the
individual programs, such as xterm, emacs or a web browser, and they don’t hav e to be
on the same machine. A special notation exists to address X servers and screens:

System name:server number.screen number

When looking at X client-server interaction, remember that the server is the software
component that manages the display. This means that you’re always sitting at the server,
not at the client. For example, if you want to start an xterm client on freebie and display
it on presto, you’ll be sitting at presto. To do this, you could type in, on presto,

$ ssh freebie xterm -ls -display presto:0 &

The flag -ls tells xterm that this is a login shell, which causes it to read in the startup
files.

For this to work, you must tell the X server to allow the connection. There are two things
to do:

• Use xhost to specify the names of the systems that have access:

$ xhost freebie presto bumble wait gw

This enables access from all the systems on our reference network, including the one
on which it is run. You don’t need to include your own system, which is enabled by
default, but if you do, you can use the same script on all systems on the network.

• xhost is not a very robust system, so by default startx starts X with the option
-nolisten tcp. This completely blocks access from other systems. If you want to
allow remote clients to access your X server, modify /usr/X11R6/bin/startx, which
contains the text:

listen_tcp="-nolisten tcp"

Change this line to read:

listen_tcp=

This enables remote connections the next time you start the server.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

X in the networ k 525

10 April 2003, 06:13:07 The Complete FreeBSD (xtheory.mm), page 525

Multiple monitors across multiple servers
We saw above that a server can handle multiple monitors, and a system can handle
multiple servers. One problem with multiple monitors is that most computers can only
handle a small number of display boards: a single AGP board and possibly a number of
PCI boards. But PCI boards are difficult to find nowadays, and they’re slower and have
less memory.

If you have a number machines physically next to each other, you have the alternative of
running X on each of them and controlling everything from one keyboard and mouse.
You do this with the x11/x2x port. For example: freebie, presto and bumble have
monitors next to each other, and presto has two monitors. From left to right they are
freebie:0.0, presto:0.0, presto:0.1 and bumble:0.0. The keyboard and mouse are
connected to presto. To incorporate freebie:0.0 and bumble:0.0 in the group, enter these
commands on presto:

$ DISPLAY=:0.0 x2x -west -to freebie:0 &
$ DISPLAY=:0.1 x2x -east -to bumble:0 &

After this, you can move to the other machines by moving the mouse in the
corresponding direction. It’s not possible to continue to a further machine, but it is
possible to connect in other directions (north and south) from each monitor on presto,
which in this case would allow connections to at least six other machines. Before that
limitation becomes a problem, you need to find space for all the monitors.

Stopping X
To stop X, press the key combination Ctrl-Alt-Backspace, which is deliberately chosen
to resemble the key combination Ctrl-Alt-Delete used to reboot the machine. Ctrl-Alt-
Backspace stops X and returns you to the virtual terminal in which you started it. If you
run from xdm, it redisplays a login screen.

xtheory.mm,v v4.13 (2003/04/03 03:13:24)

