
Guardian: A
fault-tolerant

operating
system

environment

(t16arch.G), page 1

Architectur e is nothing new. Real building architectur e has been around for thou-
sands of years, and some of the most beautiful examples of building architectur e
ar e also thousands of years old. Computers haven’t been around that long, of
course, but here too there have been many examples of beautiful architectur es in
the past. As with buildings, the style doesn’t always persist. In this chapter I de-
scribe one such architectur e, and consider why it had so little impact.

Guardian is the operating system for Tandem’s fault-tolerant “NonStop” series of
computers. It was designed in parallel with the hardware to provide fault toler-
ance with minimal overhead cost.

This chapter describes the original Tandem machine, designed between 1974 and
1976 and shipped between 1976 and 1982. It was originally called “Tandem/16”,
but after the introduction of its successor, “NonStop II”, it was retr ospectively re-
named “NonStop I”. Tandem frequently use the term “T/16” both for the system
and later for the architectur e.

I worked with Tandem hardware full-time from 1977 until 1991. Working with the
Tandem machine was both exhilarating and unusual. In this chapter, I’d like to
bring back to life some of the feeling that programmers had about the machine.

The T/16 was a fault-tolerant machine, but that wasn’t its only characteristic. In
this discussion I mention many aspects that don’t directly contribute to fault toler-
ance—in fact a couple detract from it! So prepar e for a voyage into the past,
about 1980, starting with one of Tandem’s marketing slogans.

Tandem/16: Some day all computers will be
built like this
Tandem describes the machines as single computers with multiple processors, but
fr om the perspective of the 21st century they’re mor e like a network of computers
operating as a single machine. In particular, each processor works almost com-
pletely independently from the others, and the system can recover from the failure
of any single component, including processors. The biggest differ ence fr om con-
ventional networked processors is that the entire system runs from a single kernel
image.

Hardware
Tandem’s hardware is designed to have no potential for a “single point of failure”:
any one component of the system, hardware or softwar e, can fail without causing
the entire system to fail. Beyond this, it is designed for graceful degradation: in
most cases, the system as a whole can continue running despite multiple failures,
though this depends greatly on the nature of the individual failure.

The first implication of this architectur e is that there must be at least two of each
component, in case one should fail. In particular, this means that the system re-
quir es at least two CPUs.

But how should the CPUs be connected? The traditional method, then as now, is
for the CPUs to communicate via shared memory. At Tandem we call this tightly
coupled multiprocessors. But if the processors share memory, that memory could
be a single point of failure.

Theor etically it is possible to duplicate memory—a later Tandem architectur e actu-
ally did that—but it’s very expensive, and it creates significant timing problems.
Instead, at the hardware level Tandem chose a pair of high-speed parallel buses,
the “Interprocessor Bus” or IPB, sometimes also referr ed to as Dynabus, which
transfer data between the individual CPUs. This architectur e is sometimes called
loosely coupled multiprocessors.

Ther e’s mor e to a computer than the CPU, of course. In particular, the I/O system
and data storage are of great importance. The basic approach here is also duplica-

tion of hardware; we’ll look at it further down.

The resultant architectur e looks something like this, the so-called Mackie diagram,
named after Dave Mackie, a vice-president of Tandem:

Figur e 1

Illustrator s: I refer to this diagram in a number of places.
In particular, the red markings show the access paths to the
disks. Let me know how you represent this so that I can
change the text accordingly.

The dotted lines between $SYSTEM-P and $SYSTEM-B are
supposed to indicate that the disks have these names.

This could easily have led to at least doubling the cost of a system, such as is the
case with “hot standby” systems, where one component is only present to wait for
the failure of its partner. Tandem chose a differ ent appr oach for the more expen-
sive components, such as CPUs. Each CPU is active: instead, the operating system
pr ocesses pr ovides the hot standby function.

Dia gnosis
The operating system needs to find out when a component fails. In many cases,
ther e’s not much doubt: if it fails catastrophically, it stops responding altogether.
But in many cases, a failed component continues to run, but generates incorrect
results.

Tandem’s solution to this problem is neither particularly elegant nor efficient. The
softwar e is designed to be paranoid; at the first suggestion that something has

gone wrong, the operating system stops the CPU—there’s another to take over the
load. If a disk controller retur ns an invalid status, it is taken offline—ther e’s an-
other to continue processing without interruption. But if the failure is subtle, it
could go undetected, and on rare occasions this results in data corruption.

It’s not enough for a CPU to fail, of course; other CPUs have to find out that it has
failed. The solution here is a watchdog: each CPU broadcasts a message, the so-
called “I’m alive” message, over both buses every 1.2 seconds. If a CPU misses
two consecutive “I’m alive” messages from another CPU, it assumes that that CPU
had failed. If the CPUs share resources (processes or I/O), the CPU that detects
the failure then takes over the resources.

Repair
It’s not enough to take a defective component offline; to maintain both fault toler-
ance and perfor mance, it needs to be brought back on line (“up”) as quickly as
possible, and of course without taking any other components off line (“down”).

How this happens depends on the component and the nature of the failure. If the
operating system has crashed in one CPU (possibly deliberately), it can be reboot-
ed (“reloaded”) on line. The standard way to boot a system is to first boot one
pr ocessor fr om disk, then boot all other processors across the IPB. Failed proces-
sors are also rebooted via the IPB.

If, on the other hand, the hardware is defective, it needs to be replaced. All sys-
tem components are hot-pluggable: they can be removed and replaced in a run-
ning system with power up. If a CPU fails because of a hardware problem, the
appr opriate board is replaced, and then the CPU is rebooted across the bus as be-
for e.

Mechanical layout
The system is designed to have as few boards as possible, so all boards are very
large, about 50 cm square. All boards use low power Schottky TTL logic.

The CPU consists of two boards, the processor and the MEMPPU. The MEMPPU
contains the interface to memory, including virtual memory logic, and the interface
to the I/O bus. The T/16 can have up to 512 kW (1 MB) of semiconductor memo-
ry or 256 kW of core memory. Memory boards come in three sizes: 32 kW core,
96 kW and 192 kW semiconductor memory. This means that there is no way of
getting exactly 1 MB of semiconductor memory with fully populated boards. Cor e
memory has word parity protection, while semiconductor memory has ECC pro-
tection, which can correct a single bit error and detect a double bit error.

Pr ocessor cabinets are about 1.8 metres high and house four CPUs with semicon-

ductor memory or 3 CPUs with core memory. The pr ocessors ar e located at the
top of the cabinet, with the I/O controllers located in a second rack directly be-
low. Below that are fans, and at the bottom of the cabinet there are batteries to
maintain memory contents during power failures.

Most configurations have a second cabinet with a tape drive. The disk drives are
fr ee-standing 14" units. Ther e is also a system console, a DEC LA-36 printing ter-
minal.

Processor architecture
The CPU is a custom TTL design which shows significant similarities with the
Hewlett-Packard 3000. It has virtual memory with a 2 kB page size, a stack-based
instruction set and fixed-width 16 bit instructions. Raw processor speed is about
0.8 MIPS per processor, giving 13 MIPS in a fully equipped 16 processor system.

Memor y addressing
The T/16 is a 16 bit machine, and the address space is limited to 16 bits width.
Even in the late 1970s, this is beginning to become a problem, and Tandem ad-
dr esses it by providing a total of four address spaces at any one time:

• User code. This address space contains the executable code. It is read-only
and shared between all processes that use it. Due to the architectur e (sepa-
rate memory for each CPU), the code can only be shared on a specific CPU.

• User data, the data space for user processes.

• System code, the code for the kernel.

• System data, the kernel data space.

With one exception, only one data space and one code space is accessible at any
one time. They are specified in the Envir onment Register, which contain a num-
ber of flags describing the current CPU state:

The SD bit determines the data space, and the SC bit determines the code space.
The SG-r elative addr essing mode is an exception to this rule: it always addresses
system data.

In keeping with the aim of reliability and data integrity, the trap bit in the E reg-
ister enables, amongst other things, traps on arithmetic overflow. There are “logi-
cal” equivalents of the arithmetic instructions that do not set the condition codes.

The CPU has a hardware stack addressed by two registers, the S register or stack
pointer, and the L register, which points to the current stack frame. The L register
is a relatively new idea: it points to the base of the current frame. Unlike the S
register, it does not change during the execution of a procedur e.1 The stack is lim-
ited by addressing considerations to the first 32 kB of the current data space, and
unlike some other machines, it grows upwards.2

In addition to the hardware stack, there is a register stack of 8 16 bit words. The
registers are number ed R0 to R7, but the instruction set uses them as a circular
stack, where the top of stack is defined by the RP bits of the E register. In the fol-
lowing example, RP is set to 3, making R3 the top of stack, referr ed to as the A
register:

1. This is the same thing as the base pointer register used in most 21st century processors.

2. Stacks were quite a new idea in the 1970s. Like its predecessor, the HP 3000, Tandem’s support for stacks
went significantly beyond that of systems like DEC’s PDP-11, the most significant other stack-based
machine of the time.

R7

R6

R5

R4

R3

R2

R1

R0

E 011

RP

A

B

C

D

E

F

G

H

Assuming that the register stack is “empty” at the beginning, a typical instruction
sequence might be:

LOAD varˆa -- push varˆa on stack (R0)
LOAD varˆb -- push varˆb on stack (R1)
ADD -- add A and B (R1 and R0), storing result in R0 (A)
STOR varˆc -- save A to varˆc

Instructions are all 16 bits wide, which does not leave much space for an address
field: it is only 9 bits wide. To work around this problem, Tandem bases
addr essing on offsets from a series of registers:

S

L

G

SG

Unused stack

Local data

stack frame

Call parameters

calling procedur es

global data

system data

User data

System data

Only the following memory areas can be addressed directly (without indirect
addr essing):

• The first 256 words of the current data space, referr ed to as “G” (global)
mode. These ar e fr equently used for indirect pointers.

• The first 128 words positive offset from the L register, called L+. These are
the local variables of the current procedur e invocation, which would be
called automatic variables in C.

• The first 64 words of system data (“SG+” mode). System calls run in user
data space, so the CPU needs some means for privileged procedur es to
access system data. They are not accessible, even read-only, to unprivileged
pr ocedures.

• The first 32 words below the current value of the L register. This includes
the caller stack frame (3 words) and up to 29 words of parameters passed to
the procedur e.

• The first 32 words below the top of the stack (S- addr essing). These are
used for subpr ocedures, procedur es defined inside another procedur e, which
ar e called without leaving a stack frame. This address mode thus handles
both the local variables and the parameters for a subprocedur e.

These address modes are encoded in the first few bits of the address field of the
instruction:

0 of fset Global (0:%377)

10 of fset L+ (0:%177)

110 of fset SG (0:%77)

1110 of fset L- (-%37:0)

1111 of fset S- (-%37:0)

Illustrator s: These boxes are 9 bits wide, and each of the
dig its in the first part represents one bit.

The % symbol repr esents octal numbers, like %377 (decimal 255, or hexadecimal
7F). Tandem does not use hexadecimal.

The instruction format also provides single-level indirection: if the I bit is set in
the instruction, the retrieved data word is taken as the address of the final
operand, which has to be in the same address space. The address space and the
data word are both 16 bits wide, so there is no possibility for multi-level
indir ection.

One problem with this implementation is that the unit of data is a 16 bit word, not
a byte. The instruction set also provides “byte instructions” with a differ ent
addr essing method: the low-order bit of the address specifies the byte in the word,
and the remainder of the address are the low-order 15 bits of the word address.
For data accesses, this limits byte addressability to the first 32 kB of the data space;
for code access, it limits the access to the same half of the address space as the
curr ent instruction. This has given rise to the restriction that a procedur e cannot
span the 32 kB boundary in the code space.

Ther e ar e also two instructions, LWP (load word from program) and LBP (load
byte from program) that can access data in the current code space.

Procedure calls
Tandem’s programming model owes much to the Algol and Pascal world, so it
reserves the word function for functions that retur n a value, and pr ocedure for
those that do not. Two instructions are provided to call a procedur e: PCAL for
pr ocedures in the current code space, and SCAL for procedur es in the system

code space. SCAL fulfils the function of a system call in other architectur es.

All calls are indir ect via a Pr ocedure Entry Point Table or PEP, which occupies up
to the first 512 words of each code space. The last 9 bits of the PCAL or SCAL
instruction are an index in this table.

This approach has dangers and advantages: the kernel uses exactly the same
function call methods as user code, which simplifies things. On the other hand, at
least in theory, the SCAL instruction enables any user program to call any kernel
function.

The system protects access to sensitive procedur es based on the priv bit in the E
register. It distinguishes between three kinds of procedur es:

• Non-privileged procedur es, which can be called from any procedur e,
whether privileged or not.

• Privileged procedur es, which can be called only from other privileged
pr ocedures.

• Callable pr ocedures, which can be called from any procedur e, but which set
the priv bit once called. They provide the link between the privileged and
the non-privileged procedur es.

The distinction between privileged, non-privileged and callable procedur es is
dependent on their position in the PEP. Thus it is possible to have non-privileged
library procedur es in the system PEP, sometimes called the SEP. The table has the
following structure:

privileged

pr ocedures

callable

pr ocedures

non-privileged

pr ocedures

First priv

First callable0

1

2

Action of the PCAL and SCAL instr uctions
The PCAL instruction perfor med the following actions:

• If the priv bit in the E register is not set (meaning that the calling
pr ocedure is non-privileged), check the “first priv” value (word 1 of the code
space). If the offset in the instruction is greater or equal, the procedur e is
trying to call a privileged procedur e. Generate a protection trap.

• If the priv bit in the E register is not set, check the “first callable” value
(word 0 of the code space). If the offset in the instruction is greater or
equal, set the priv bit in the E register.

• Push the current value of the P register (program counter) on to the stack.

• Push the old value of the E register on to the stack.

• Push the current L register value on the stack.

• Copy the S register (stack pointer) to the L register.

• Set the RP field of the E register to 7 (empty).

• Load the contents of the PEP word addressed by the instruction into the P
register.

The SCAL instruction works in exactly the same way, except that it also sets the
SC bit in the E register, thus ensuring that execution continues in kernel space.
The data space does not change.

The PCAL and SCAL instructions are very similar, and the programmer normally
does not need to distinguish between them. That is done by the system at
execution time. Thus library procedur es can be moved between user code and
system code with no recompilation.

The interprocessor bus
All communication between CPUs goes via the interpr ocessor bus or IPB. Ther e
ar e in fact two busses, called X and Y (see Figure 1), in case one fails. Unlike
other components, both busses are used in parallel when they’re up.

Data is passed across the bus in fixed-length packets of 16 words. The bus is fast
enough to saturate memory on both CPUs, so the client CPU perfor med it
synchr onously in the dispatcher (scheduler) using the SEND instruction. The
destination (server) CPU reserves buffer space for a single transfer at boot time.
On completion of the transfer the destination CPU receives a bus receive interrupt
and handles the packet.

Input/Output
Each processor has a single I/O bus with up to 32 controllers. All contr ollers ar e
dual-ported and connected to two differ ent CPUs. At any one time, only one CPU
has access to any specific controller. This relationship between CPU and
contr oller is called ownership : the controlling CPU “owns” the controller. The
backup path is not used until the primary path fails or the system operator
manually switches to it (a so-called primary switch).

Disks are a particularly sensitive issue: many components could fail. It could be a
disk itself, the physical connection (cable) to the disk, the disk controller, the I/O
bus or the CPU to which it is connected. As a result, in addition to the dual-
ported controllers, each disk is physically duplicated—at least in theory—and it is
also dual-ported and connected to two differ ent contr ollers, both connected to the
same two CPUs The restriction remains that only one CPU can access each
contr oller at any one time, but it is possible for one of the CPUs to own one of the
contr ollers, and the other CPU to own the other controller. This is also desirable
fr om a per formance point of view.

Figur e 1 shows a standard configuration: the system disk $SYSTEM is in fact a pair
of disks called $SYSTEM-P (primary) and $SYSTEM-M (mirr or). The primary disk
is controlled from CPU 0 by one controller, and the mirror disk is controlled from
CPU 1 by the other controller (XXX red markings XXX).

That’s the theory, anyway. In practice, disks and drives are expensive, and many
people run at least some of their disks in degraded mode, without duplicating the
drive hardware. This works as well as you would expect, but of course there is
no longer any further fault tolerance: effectively, one of the disks has already
failed.

Process structure
Guardian is a process-based microker nel system: apart from the low-level interrupt
handlers (a single procedur e, IOINTERRUPT) and some very low-level code, all
the system functions are per formed by system processes which run in system code
and data space. The more important ones are:

• The system monitor, PID 0 in each CPU, is responsible for starting and
stopping other processes and for miscellaneous tasks such as retur ning status
infor mation, generating hardware err or messages and maintaining the time of
day.

• The memory manager, PID 1 in each CPU, is responsible for I/O for the
virtual memory system.

• The I/O processes are responsible for controlling I/O devices. All access to
I/O devices from anywhere in the system goes via its dedicated I/O process.
The I/O controllers are connected to two CPUs, so each device is controlled
by a pair of I/O processes running in those CPUs, a primary pr ocess that
per forms the work and a backup pr ocess that tracks the state of the primary
pr ocess and waits to fail or to hand over control to it voluntarily (“primary
switch”).

The main issue in the choice of primary CPU is the CPU load, which needs
to be balanced manually. For example, if you have 6 devices connected
between CPUs 2 and 3, you would probably put the primary process of 3 of
them in CPU 2, and the primary process of the other 3 in CPU 3.

Process pairs
The concept of pairs of processes is not limited to I/O processes. It is one of the
cor nerstones of the fault-tolerant approach. To understand the way they work, we
need to understand the way messages are passed in the system.

Messa ge system
As we’ve seen, the biggest differ ence between the T/16 and conventional
computers is the lack of any single requir ed component. Any one part of the
system can fail without bringing down the system. This makes it more like a
network than a conventional shared memory multiprocessor machine.

This has far-r eaching implications for the operating system design. A disk could
be connected to any two of sixteen CPUs. How do the others access it? Moder n
networks use file systems such as NFS or CIFS, which run on top of the network
pr otocols, to handle this special case. But on the T/16 it isn’t a special case; it is
the norm.

File systems aren’t the only thing that requir ed this kind of communication:
interpr ocess communication of all kinds requir ed it too.

Tandem’s solution to this issue is the message system, which runs at a very low
level in the operating system. It is not directly accessible to user programs.

The message system transmits data between processes. In many ways it resembles
the later TCP or UDP. The initiator of the message is called the requestor, and the
object is called the server.1

All communication between processes, even on the same CPU, goes via the
message system. The following data structures implements the communication:

• Each message is associated with two Link Control Blocks or LCBs, one for the
requestor and one for the server. These small data objects are designed to fit
in a single IPB packet. If more data is needed than would fit in the LCB, a

separate buffer is attached.

• To initiate a transfer, the requestor calls the procedur e link. This
pr ocedure sends the message to the server process and queues the LCB on
its message queue. At this point the server process has not been involved,
but the dispatcher awakes the process with an LREQ (link request) event.

On the requestor side, the call to link retur ns immediately with information
to identify the request; the requestor does not need to wait for the server to
pr ocess the request.

• At some time the server process sees the LREQ event and calls listen,
which removes the first LCB from the message queue.

• If a buffer is associated with the LCB, and it includes data to be passed to
the server, the server calls readlink to read in the data.

• The server then perfor ms whatever processing is necessary and then calls
writelink to reply to the message, again possibly with a data buffer. This
wakes the requestor on LDONE.

A process can sleep waiting for multiple specific events, which are specified as a bit
mask. When woken, it receives information about which event has occurred. A
number of these events are related to the message system.

• The requestor sees the LDONE event and examines the results and terminates
the exchange by calling breaklink, which frees the associated resources.

Only other parts of the kernel use the message system directly. The file system
uses it to communicate with the I/O devices and other processes: interprocess
communication is handled almost identically to I/O, and it also is used for
maintaining fault-tolerant pr ocess pairs.

This approach is inherently asynchronous and multi-threaded: after calling link,
the requestor continues its operations. Many requestors can send requests to the
same server, even when it’s not actively processing requests. The server does not
need to respond to the link request immediately. When it replies, the requestor
does not need to acknowledge the reply immediately. Instead, in each case the
pr ocess is woken on an event which it can process when it is ready.

Process pairs, revisited
One of the requir ements of fault tolerance is that a single failure must not bring
the system down. We’ve seen that the I/O processes solve this by using process
pairs, and it’s clear that this is a general way to handle the failure of a CPU.

1. These names correspond closely in function to the modern terms client and server.

Guardian therefor e pr ovides for creation of user-level process pairs.

All process pairs run as a primary and a backup pr ocess. The primary process
per forms the processing, while the backup process is in a “hot standby” state.
Fr om time to time the primary process updates the memory image of the backup
pr ocess, a process called checkpointing. If the primary fails or voluntarily gives up
contr ol, the backup process continues from the state of the last checkpoint. A
number of procedur es implement checkpointing, which is perfor med by the
message system:

• The backup process calls checkmonitor to wait for checkpoint messages
fr om the primary process. It stays in checkmonitor until the primary
pr ocess goes away or relinquishes control. During this time, the only use of
the CPU is message system traffic to update its data space and calls to open
and close to update file information,

• The primary process calls checkpoint to copy portions of its data space
and file information to the backup process. It is up to the programmer to
decide which data and files to checkpoint, and when.

• The primary process calls checkopen to checkpoint information about file
opens. This ef fectively results in a call to open fr om the backup process.
The I/O process recognizes that this is a backup open and treats it as
equivalent to the primary open.

• The primary process calls checkclose to checkpoint information about file
closes. This ef fectively results in a call to close fr om the backup process.

• The primary process may call checkswitch to voluntarily release control
of the process pair. When this happens, the primary and backup processes
reverse their roles.

When the backup process retur ns fr om checkmonitor, it has become the new
primary process. It retur ns to the location of the old primary’s last call to
checkpoint, not to the location from which it was called. It then carries on
pr ocessing fr om this point.

In general, the life of a process pair can look like:

Primary Backup

Per form initialization
call newprocess to create backup
pr ocess

Per form initialization
call checkmonitor to receive
checkpoint data

call checkpoint wait in checkmonitor
call checkopen call open fr om checkmonitor
pr ocessing wait in checkmonitor
call checkswitch wait in checkmonitor
pr ocessing wait in checkmonitor

take overvoluntary switch: call checkswitch
pr ocessingcall checkmonitor to receive

checkpoint data
wait in checkmonitor call checkpoint
wait in checkmonitor pr ocessing
wait in checkmonitor call checkpoint
wait in checkmonitor CPU fails
take over (gone)
pr ocess

Synchronization

This approach proves very reliable. It can deliver reliability superior to that of a
pur e lock-step approach: in some classes of program error, notably race
conditions, a process that is running in lock-step will run into exactly the same
pr ogram err or and crash as well. A mor e loosely coupled approach can often
avoid the exact same situation and continue functioning.

A couple of issues are not immediately obvious:

• Checkpointing is CPU-intensive. How often should a process checkpoint?
What data should be checkpointed? This decision is left to the programmer.
If he does it wrong, and forgets to checkpoint important data, or does it at
the wrong time, the memory image in the backup process will be
inconsistent, and it may malfunction.

• If the primary process perfor ms exter nally visible actions, such as I/O, after
per forming a checkpoint but before failing, the backup process will repeat
them after takeover. This could result in data corruption.

In practice, the issue of incorrect checkpointing has not proved to be a problem,
but duplicate I/O most certainly is a problem.

The system solves this problem by associating a sequence number called a sync id
with each I/O request. The I/O process keeps track of the requests, and if it
receive a duplicate request, it simply retur ns the completion status of the first call
to the request.

Networking: EXPAND and FOX
The message system of the T/16 is effectively a self-contained network. That puts
Guardian in a good position to provide wide-area networking by effectively
extending the message system to the whole world. The implementation is called
EXPAND.

Fr om a programmer’s point of view, EXPAND is almost completely seamless. Up
to 255 systems can be connected together.

System names

Each system has a name starting with a backslash, such as \ESSG or \FOXII,
along with a node number. The node numbers are much less obvious than
moder n IP addresses: from the programmer’s perspective they are necessary
almost only for encoding file names, which we’ll see below.

EXPAND is an extension of the message system, so most of the details are hidden
fr om the programmer. The only issues are the differ ence in speed and access
requir ements, which we’ll look at below.

FOX

Fr om pur ely practical constraints it is difficult to build a system with more than 16
CPUs; in particular, hardwar e constraints limit the length of the interprocessor bus
to a few metres, so a realistic limit is 16 CPUs. Beyond that, Tandem supplies a
fast fibre-optic connection capable of connecting up to 14 systems together in a
kind of local area cluster. In most respects it is a higher-speed version of
EXPAND.

File system
Tandem uses the term file system to mean the access to system resources that can
supply data (“read”) or accept it (“write”). Apart from disk files, the file system
also handles devices, such as terminals, printers and tape units, and processes
(interpr ocess communication).

File naming
Ther e is a common naming convention for devices, disk files and processes,
unfortunately complicated by many exceptions. Pr ocesses may have names, but
only I/O processes and paired processes must have a name. In all cases, the file
“name” is 24 characters long and consists of three 8 byte components. Only the
first component is requir ed; the other two are used only for disk files and named

pr ocesses.

Unnamed processes use only the first 8 bytes of the name. Unpair ed system
pr ocesses, such as the monitor or memory manager, have the format:

0 CPU PIN

0 1 2 3 4 5 6 7

Unpair ed user processes have the format:

timestamp CPU PIN2

0 1 2 3 4 5 6 7

Illustrator s: these pictures attempt to show a sequence of 8
bytes. The last two bytes contain CPU and PIN (described
in the text). In the first illustration, bytes 0-5 contain 0, in
the second the first 2 bits contain the value 2, and in the 5
bytes and 6 bits in the middle are either a timestamp or 0.

The combination CPU and PIN together forms the process ID or PID. The PIN is
the pr ocess identification number within the CPU. This limits each CPU to 256
pr ocesses.

Real names start with a $ sign. Devices only use the first 8 bytes, disk files use all
thr ee; the individual components look like disk, directory and file names, though
in fact there is only one directory per disk volume. Pr ocesses can also use the
other two components for passing information to the process.

Typical names are:

$TAPE tape drive
$LP printer
$SPLS Spooler process
$TERM15 ter minal device
$SYSTEM System disk
$SYSTEM SYSTEM LOGFILE system log file, on disk $SYSTEM
$SPLS #DEFAULT Default spooler print queue
$RECEIVE Incoming message queue, for interprocess communication

Illustrator s: The names in the left column must contain the
cor rect number of spaces. SYSTEM and #DEFAULT star t in
the 9th character position, LOGFILE in the 17th (i.e. the
names consist of groups of 8 character s).

If a component is less than 8 bytes long, it is padded with ASCII spaces.
Exter nally, names are repr esented in ASCII with periods, for example
$SYSTEM.SYSTEM.LOGFILE and $SPLS.#DEFAULT.

Ther e ar e still further quirks in the naming. Pr ocess subnames must start with a
hash mark (#), and user process names (but not device names, which are really
I/O process names) have the PID at the end of the first component:

$ S P L S CPU PIN

0 1 2 3 4 5 6 7

The PID in this example is the PID of the primary process. It limits the length of
user process names name to 6 characters, including the initial $.

As if that wasn’t enough, there is a separate set of names for designating
pr ocesses, disk files or devices on remote systems. In this case, the initial $ sign is
replaced by a \ symbol, and the second byte of the name is the system number,
shifting the rest of the name one byte to the right. This limits the length of
pr ocess names to 5 characters if they are to be net-visible. So fr om another system
the spooler process we saw above might have the external name \ESSG.$SPLS
and have the internal format:

\ 173 S P L S CPU PIN

0 1 2 3 4 5 6 7

The number 173 is the node number of system \ESSG.

Asynchronous I/O
One of the important features of the file system interface is the strong emphasis on
asynchr onous I/O. We’ve seen that the message system is intrinsically
asynchr onous in nature, so this is relatively simple to implement.

Pr ocesses can choose synchronous or asynchronous (“no wait”) I/O at the time
they open a file. When a file is opened no-wait, an I/O request will retur n
immediately, and only errors that are immediately apparent will be reported, for
example if the file descriptor isn’t open. At a later time the user calls awaitio to
check the status of the request. This gives rise to a programming style where a
pr ocess issues a number of no-wait requests, then goes into a central loop to call
awaitio and handle the completion of the requests, typically issuing a new
request.

Interprocess communication
At a file system level, interprocess communication is a relatively direct interface to
the message system. This causes a problem: the message system is asymmetrical.
The requestor sends a message and may receive a reply. There’s nothing that
corr esponds to a file system read command. On the server side, the server reads
a message and replies to it; there’s nothing that corresponds to a write
command.

The file system provides read and write pr ocedures, but read only works with
I/O processes, which map them to message system requests. read doesn’t work
for interprocess communication level, and in practice write is also not used
much. Instead, the requestor uses a procedur e called writeread to first write a
message to the server and then get a reply from it. Either the message or the reply
can be null (zero length).

These messages find their way to the server’s message queue. At a file system
level, the message queue is a pseudo-file called $RECEIVE. The server opens
$RECEIVE and normally uses the procedur e readupdate to read a message. At
a later point it can reply with the procedur e reply.

System messages
The system uses $RECEIVE to pass messages to processes. One of the most
important is the startup message, which passes parameters to a newly started
pr ocess. The following example is written in TAL, Tandem’s low-level system
pr ogramming language (though the name stands for “Tandem Application
Language”). TAL is derived from HP’s SPL, and it is similar to Pascal and Algol.
One of the more unusual characteristics is the use of the caret (ˆ) character in
identifiers: the underscore (_) character is not allowed. This example should be
close enough to C to be intelligible. It shows a process which starts a child server
pr ocess and then communicates with it:

Parent process (requestor)

call newprocess (programˆfileˆname,,,,,, processˆname); -- start the server process
call open (processˆname, processˆfd); -- open process
call writeread (processˆfd, startupˆmessage, 66); -- write startup message
while 1 do
begin
read data from terminal
call writeread (processˆfd,

data, dataˆlength, -- write data
reply, maxˆreply, -- read data back
@replyˆlength); -- return real reply length

if replyˆlength > 0
write data back to terminal

end;

Child process (server)

call open (receive, receiveˆfd);
do
call read (receiveˆfd, startupˆmessage, 66);

until startupˆmessage = -1; -- first word of startup message is -1.
while 1 do
begin
call readupdate (receiveˆfd, message, readˆcount, countˆread);
pr ocess message received, replacing buffer contents
call reply (message, replyˆlength);
end;

The first messages that the child receives are system messages: the parent open of
the child sends an open message to the child, then the first call to writeread
sends the startup message. The child process handles these messages and replies
to them. It can use the open message to keep track of requestors, or to receive
infor mation passed in the last 16 bytes of the file name. Only then does the
pr ocess receive the normal message traffic from the parent. At this point, other
pr ocesses can also communicate with the child. Similarly, when a requestor closes
the server, it receives a close system message.

De vice I/O
It’s important to remember that device I/O, including disk file I/O, is handled by
I/O processes, so “opening a device” is really opening the I/O process. Still, I/O
to devices and files is implemented in a slightly differ ent manner, though the file
system procedur es ar e the same. In particular, the typical procedur es used to
access files are the more conventional read and write, and normally disk I/O is
not no-wait.

Secur ity
In keeping with the time, the T/16 is not an overly secure system. In practice, this
hasn’t cause any serious problems, but one issue is worth mentioning: the
transition from non-privileged to privileged procedur es is based on the position of
the procedur e entry point in the PEP table and the value of the priv bit in the E
register. Early on exploits became apparent: if you could get a privileged
pr ocedure to retur n a value via a pointer, and get it to overwrite the saved E
register on the stack in such a way that the priv bit was set, the process would
remain privileged on retur n fr om that procedur e. It is the responsibility of callable
pr ocedures to check their pointer parameters to ensure that they don’t have any
addr essing exceptions, and that they retur n values only to the user environment.
A bug in the procedur e setlooptimer, which sets a watchdog timer and
optionally retur ns the old value, made it possible to become the SUPER.SUPER
(the root user, with ID 255,255, or -1):

proc makeˆmeˆsuper main;
begin
int .TOS = ’S’; -- top of stack address

call setlooptimer (%2017); -- set a timer value
call setlooptimer (0, @TOS [4]); -- reset, return old value to saved E reg
pcb [mypid.<8:15>].pcbprocaid := -1; -- dick in my PCB and make me super
end;

The value %2017 gets written to the E register, in particular setting the priv bit,
which leaves the process in privileged state. It then uses SG-relative addressing to
modify the user information in its own PCB. mypid is a function retur ning the
curr ent pr ocesse’s PID, and the last 8 bits (<8:15>) wer e the PIN, which is used
as an index in the PCB table.

This bug was quickly fixed, of course, but it showed a weakness in the approach:
it is up to the programmer to check the parameters passed to callable procedur es.
Thr oughout the life of the architectur e, such problems have reoccurr ed.

File access security
Tandem’s approach to file access security is similar to that of UNIX, but users can
belong only to a single group, which is part of the user name. Thus my user
name SUPPORT.GREG, also written numerically as 20,102, indicates that I
belong to the SUPPORT gr oup (20)—only, and that within that group my user ID
is 102. Each of these fields is 8 bits long, so the complete user ID fits in a word.

Each file has a number of bits describing what access the owner, the group or all
users have to the file. Unlike UNIX, however, the bits are organized differ ently:
the four permissions are read, write, execute and pur ge. Pur ge is the Tandem
name for delete, and it’s necessary because directories don’t have their own
security settings.

For each of these access modes, there is a choice of who is allowed to use them:

• Owner means only the owner of the file.

• Gr oup means anybody in the same group.

• All means anybody.

All of these relate only to the same system as where the file is located. A second
set of modes was introduced with networking to regulate access from users on
other systems:

• User means only a user with the same user and group number as the owner
of the file.

• Class means anybody with the same group number as the owner of the file.

• Network means anybody, anywhere.

Ther e is no security whatsoever for devices, and user processes have to roll their
own. The for mer is a particular disadvantage in a networked environment. At a
security seminar in early 1989, I was able to demonstrate stealing the
SUPER.SUPER (r oot) password on system \TSII, in the middle of the
management area in Cupertino, simply by putting a fake prompt on the system
console. I was in Düsseldorf at the time.

Folklore
Coming back into the present, early 21st century, it’s easy to forget the sheer fun it
was working with the computer. Tandem was a fun company, and it looked after
its employees. One Friday in late 1974, early in the development of the system,
the founders finally got the software to work on the hardware; up to this point the
softwar e had been developed on simulators. You can imagine the excitement.
The story goes that one of the VPs went out and brought in a crate of beer, and
they all sat round the crate, celebrating the event and discussing the future. One
thing they decided was that the crate of beer should be a weekly event: the
Tandem Beer Bust was born, and it really did continue into the 1990s, during
which it became increasingly politically incorrect and was finally cancelled.

Tandem gave rise to lots of slogans and word plays, of course—the name
“Tandem” itself was one. In those days we had T-shirts with slogans like “So nice,
so nice, we do it twice”, “There’s no stopping us” and “Tandem users do it with
mirr ors”. And, of course, the standard answer when anybody came up with an
excess of just about anything: “It’s there in case one fails”.

This last slogan was more than just word play. It sat deep in our thought
pr ocesses. Early on, after retur ning fr om 5 weeks of Tandem training, I was faced
with the sad discovery that our cat had run away. After establishing that she
wasn’t going to retur n, we went out and got—two new cats. It wasn’t until much
later that I learnt that this was the result of successful brain-washing. Even today I
have a phobia of rebooting a computer unless it’s absolutely unavoidable.

Disadvanta ges
The T/16 was a remarkably successful machine for its intended purpose—at one
time over 80% of all ATMs in the USA were contr olled by Tandem systems—but of
course there wer e disadvantages as well. Some, like the higher cost in
comparison with conventional systems, are inevitable. Others wer e not so
obvious to the designers.

Perfor mance
Tandem was justifiably proud of the near-linear scaling of perfor mance when
hardwar e was added. [Horst, Chou, 1985], which refers to a later system, the TXP,
shows how a FOX cluster can scale linearly from 2 to 32 processors.

[Bartlett 1982] shows the down side: the perfor mance of the message system
limited the speed even of small systems. A single message with no attached data
takes over 2 ms to transmit, and messages with 2000 bytes of data in each
dir ection take between 4.6 ms (same CPU) and 7.0 ms (differ ent CPUs). This is
the overhead for a single I/O operation, and even in its day it was slow. The
delay between sequential I/O requests to a file was long enough that they would
not occur until the data had passed the disk head, meaning that only one request
could be satisfied per disk revolution. A pr ogram that sequentially reads 2 kB
fr om disk and processes it (for example, the equivalent of gr ep) would get a
thr oughput of only 120 kB/s. Smaller I/O sizes, such as 512 bytes, could limit the
thr oughput to floppy disk speeds.

Hardware limitations
As the name “Tandem/16” suggests, the designers had a 16 bit mind set. That is
fairly typical for the mid-1970s, but the writing was already on the wall that “real”
computers had a 32 bit word. Over the course of time a number of them were
addr essed. In 1981, Tandem introduced the NonStop II system with an upwards
compatible instruction set and fewer hardware limitations. Over the next 10 years,
a number of compatible but faster machines were intr oduced. None were
extr emely fast, but they were fast enough for online transaction processing. In
addition, the operating system was rewritten to address the more immediate
pr oblems, and over the course of time additional improvements were made. The
changes included:

• Intr oduce a 31 bit address mode to give user processes “unlimited” memory
space. This mode used byte addresses, but it didn’t remove the limitations
on stack size and code spanning the 32 kB boundary, since the old
instruction formats were still in use.

• Incr ease the number of hardware virtual memory maps. The T/16 had only
four, for the four code and data spaces. Later machines also had a system
library and user library space, which increased the total space available to
384 kB. A total of 16 memory maps meant that the processor could directly
addr ess up to 2 MB without involving the memory manager.

One of these maps was used as a kind of translation lookaside buffer to
handle the 31 bit extended addresses.

Still later, the number of library spaces was increased from 2 (system and
user) to up to 62 (31 each system and user) by segment switching: only a
single user library and system library map could be active at any one time.

• Message queue size proved to be a problem. The monitor processes sent
status messages at regular intervals to every process that wanted them. If the
pr ocess didn’t read the messages, large numbers of resources (LCBs and
message buffers) could be used. To addr ess this problem, a messenger was
intr oduced that would keep a single copy of these status messages and send
them to a process when it called listen.

Missed opportunities
The T/16 was a revolutionary machine, but it also offer ed an environment that few
other machines of the day did. Ultimately, though, it was the small things that got
in the way. For example, device independence is one of the most enduring aims
of operating systems, and Tandem went a long way towards this goal. Ultimately,
though, they missed their full potential because of naming issues and almost
gratuitous incompatibilities. Why was it not possible to use read in interprocess
communication? Why did process names have to differ in format from device
names? Why did they need a # character in the 9th byte?

Split brain
A mor e serious issue was with the basic way of detecting errors. It worked fine as
long as only one component failed, and usually quite well if two failed. But what
if both interprocessor buses failed? Even in a two-CPU system, the results could
be catastrophic. Each CPU would assume that the other had failed and take over
the I/O devices, not once, but continually. Such circumstances did occur,
fortunately very rarely, and they often resulted in complete corruptions of the data
on disks shared between the two CPUs.

Poster ity
Fr om 1990 on, a number of factors contributed to a decline in Tandem’s sales:

• Computer hardware in general was becoming more reliable, which narrowed
Tandem’s edge.

• Computer hardware was becoming much faster, highlighting some of the
basic perfor mance limitations of the architectur e.

In the 1990s, the T/16 processor architectur e was replaced by a MIPS-based
solution, though much of the remaining architectur e remained in place. The
dif ference in perfor mance was big enough that as late as 2000 Tandem was still
using the MIPS processors to emulate the T/16 instructions. One of the reasons
was that most Tandem system-level software was still written in TAL, which was
closely coupled to the T/16 architectur e. Moves to migrate the code base to C
wer e rejected because of the cost involved.

For such a revolutionary system, the Tandem/16 has made a surprisingly small
impr ession on the industry and design of modern machines. Much of the
functionality is now more readily available—mirror ed disks, network file systems,
the client-server model or hot pluggable hardware—but it’s difficult to see
anything that suggests that Tandem was leading the way. This may be because
the T/16 was so differ ent fr om most systems, and of course the purely commercial
envir onment in which it was developed didn’t help either.

Fur ther reading
Hewlett-Packard has a number of papers on its web site; start looking at the
Tandem Technical reports at http://www.hpl.hp.com/techr eports/tandem/. In
particular,

[Bartlett 1982] http://www.hpl.hp.com/techr eports/tan-
dem/TR-81.4.html?jumpid=r eg_R1002_USEN, “A NonStop Kernel” by Joel F.
Bartlett, gives more infor mation about the operating system environment.

[Horst, Chou, 1985], “The Hardware Architectur e and Linear Expansion of Tandem
NonStop Systems”, April 1985, http://www.hpl.hp.com/techr eports/tan-
dem/TR-85.3.html.

[Bartlett et al 1990] “Fault Tolerance in Tandem Computer Systems”
http://www.hpl.hp.com/techr eports/tandem/TR-90.5.html describes the hardware in
mor e detail.

[Gray 1988], “The cost of messages” http://www.hpl.hp.com/techr eports/tan-
dem/TR-88.4.html describes some of the perfor mance issues from a theoretical

point of view.

